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Abstract 
 

Much of the knowledge that we have from our world stems from images. Using optics and cameras, 

we can map how much light a sample absorbs or refracts and from that deduce the composition or 

physical structure of the sample. On the other hand, a limiting factor in optical microscopy is the 

sensitivity to minute refractive index changes. For example, when imaging biological cells, 

labeling has to be used since the minute changes in the real and imaginary part of the refractive 

index, induced by the cell’s inner workings, are practically invisible. Label-free imaging of the 

constituents of a living cell is still an open challenge 

 

In this master thesis we explored novel techniques that involve the use of optical cavities towards 

a goal to enhance the resolution of optical microscopy. Our study was focused on using theoretical 

tools and numerical simulations to analyze the behavior of optical cavities when used in 

combination with imaging systems. Based on our analysis we have designed such complex optical 

systems, optimized to be used for imaging applications. 
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Περίληψη 

 

Πολλές από τις γνώσεις που έχουμε για τον κόσμο μας, πηγάζουν από εικόνες. Χρησιμοποιώντας 

οπτικά στοιχεία και κάμερες, μπορούμε να χαρτογραφήσουμε πόσο φως απορροφάται ή διαθλάται 

από ένα δείγμα και από αυτό να συμπεράνουμε την σύσταση ή την φυσική δομή του δείγματος. 

Αφετέρου, ένας περιοριστικός παράγοντας στην οπτική μικροσκοπία είναι η ευαισθησία σε μικρές 

αλλαγές του δείκτη διάθλασης. Για παράδειγμα, όταν απεικονίζουμε βιολογικά κύτταρα, πρέπει 

να γίνεται χρήση ετικετών, καθώς οι παραμικρές αλλαγές στο πραγματικό και το φανταστικό 

μέρος του δείκτη διάθλασης, το οποίο οφείλεται στις εσωτερικές διεργασίες του κυττάρου, είναι 

πρακτικά αόρατες. Η μη χρήση ετικετών στην οπτική απεικόνιση ενός ζωντανού κυττάρου, είναι 

ακόμα μία ανοικτή πρόκληση. 

Ο σκοπός της παρούσας μεταπτυχιακής εργασίας είναι να εξερευνήσουμε καινοτόμες τεχνικές, 

βασιζόμενες σε χρήση οπτικών κοιλοτήτων, με σκοπό την βελτίωση της διακριτικής ικανότητας 

στην οπτική μικροσκοπία. Η μελέτη μας εστιάστηκε στην χρήση θεωρητικών εργαλείων και 

αριθμητικών προσομοιώσεων ώστε να αναλύσουμε την συμπεριφορά των οπτικών κοιλοτήτων 

όταν αυτές συνδυάζονται με συστήματα οπτικής απεικόνισης. Σύμφωνα με την ανάλυσή μας, 

έχουμε σχεδιάσει σύνθετα οπτικά συστήματα, βελτιστοποιημένα ώστε να χρησιμοποιηθούν για 

εφαρμογές απεικόνισης. 
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Introduction 
 

Humans, curious beings, have always been trying to explain physical phenomena by making 

observations. This led to the development of physical sciences where we -people- try to explore 

and understand our world in both a macroscopic and microscopic level. Human eye, is an 

embedded imaging system that helps us image the world around. But eyes have a limit on the range 

they function. For this reason, scientists have developed techniques that allow to image objects in 

both macroscopic and microscopic scale. 

 

Optical microscopy is an imaging technique where light interacts with some specimen (for 

example a biological cell) and by collecting the light after the interaction, an image of the specimen 

can be formed. The simplest and most well-known microscopy imaging technique is the bright 

field microscopy [1] where we illuminate a sample with white light from below and we observe it 

from above, like in light microscopes. The sample appears dark in a bright background. Another 

one, is the dark field microscopy [2] which forms images in an opposite way to the brightfield 

microscopy. The specimen is illuminated with white light but only scattered light is collected in 

the end, forming a bright image of the sample in a dark background. Finally, one frequently used 

technique is the fluorescent microscopy [3] where the sample gets excited with a particular 

wavelength and then sample reemits in a different wavelength which we collect to form the image. 

 

As stated in the abstract, we want to explore a new optical imaging technique that involves optical 

cavities. As a result, the first two chapters are devoted to the theoretical background needed for 

optical cavities, while the third chapter contains theoretical simulations on the imaging system we 

designed. Finally, in the last chapter, we present some first experimental results on the operation 

an optical cavity experimentally.  
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Chapter 1 – Light Propagation in Optical Systems 
 

1.1 Geometrical Optics and Paraxial Approximation 
 

Geometrical optics, is a field of optics, where under the condition that the wavelength 𝜆 → 0, the 

propagation of an electromagnetic light wave can be described with geometric light rays. These 

rays are related to the flow of energy in the electromagnetic field. They are straight lines in the 

case of homogeneous medium while they are curved in the case of inhomogeneous medium.  

 

Paraxial approximation, takes into account that the rays form a small angle to the optical axis of 

the system or else that the propagation direction of the light deviates only slightly from some 

optical axis. This approximation allows great simplifications in calculations for some optical 

system. It is used both in ray tracing and in Gaussian optics, as light passes through a simple optical 

system (e.g. refractive plane) or a complex one (e.g. combined optical elements like lenses and 

mirrors).  

 

By defining the angle of the ray to the optical axis with the letter 𝛽 and considering paraxial 

approximation, the following Taylor expansion simplifications emerge: 

 

 𝑐𝑜𝑠𝛽 ≅ 1    ,    𝑠𝑖𝑛𝛽 ≅ 𝛽    ,    𝑡𝑎𝑛𝛽 ≅ 𝛽 (1) 

 

with 𝛽 measured in radians. 

 

1.1.1 Ray Matrix Representation in Paraxial Approximation 
 

Ray transfer matrix analysis is a mathematical method that uses matrices to describe ray 

propagation through an optical system, under the paraxial approximation. It connects the height 

and inclination of the ray in the input plane to those in the output plane, as the ray progresses 

through an optical system. Height is defined on a transverse plane to the optical axis and inclination 

is measured from the optical axis to the ray.  
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Fig. 1 Representation of a ray propagation on the y-z plane 

 

Both are described as a column vector, namely ray vector. Therefore, the form of the ray vector 

will be: 

 

 [
𝒚𝒊

𝒏𝒊 ∙ 𝜷𝒊
] (2) 

 

where, 𝑦𝑖 is the height of the ray, 𝛽𝑖 the inclination (angle) of the ray measured from optical axis 

z in radians and 𝑛𝑖 is the index of refraction of the medium 

 

As ray propagates through an optical system, the ray vectors of the initial transverse plane to the 

final transverse plane are connected through a 2 × 2 transformation matrix which describes the 

optical system between these transverse planes. 

 

 [
𝒚𝒊

𝒏𝒊 ∙ 𝜷𝒊
] = [

𝑨 𝑩
𝑪 𝑫

] ∙ [
𝒚𝒊−𝟏

𝒏𝒊−𝟏 ∙ 𝜷𝒊−𝟏
] (3) 

 

This transformation matrix is often referred to as ABCD matrix and the whole approach as ABCD 

matrix theory which will be analyzed later. 
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1.2 Validity Limits of the Paraxial Approximation 
 

In natural sciences, the approximations of Eq.(1) are widely used to simplify calculations in 

many problems. However, those terms are only the first non-zero terms in Taylor expansion 

approximation. This means, that they give good accuracy for small angles while more terms of 

the expansion are needed to improve accuracy for bigger angles. As a result, it is necessary to 

study the range of angles that the approximation of Eq.(1) works adequately.  

 

 

Fig. 2 Ray d inclined by angle θ to the optical axis, incident to a spherical surface. 

 

In the image above, one can see that for increasing inclination θ, the approximation produces 

increasing errors (dashed line). [4]  

 

Applying Pythagoras’s theorem, 

 

 𝑑

𝑠
≅ √1 + (

ℎ

𝑠
)

2

 (4) 

 

But 𝑑 ≅ 𝑠 for every 
𝑑

𝑠
≤ 1.1 , and as a result, 
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ℎ

𝑠
≤ 0.458 ⇒  𝜃 ≤ 24.6° (5) 

 

Assuming 𝑚 is an error term (obviously 𝑚 < 1 ), 

 

 
𝑑

𝑠
≤ 1 + 𝑚 (6) 

 

it can be concluded that, 

 

 
ℎ

𝑠
≤ √2𝑚 + 𝑚2 (7) 

 

However, for 𝑚 ≪ 1 (e.g. 0.1) the term 2𝑚 is much larger than 𝑚2 and therefore, 

 

 
ℎ

𝑠
≤ √2𝑚 (8) 

 

In Fig. 2, numerical aperture NA is defined as the following product: 

 

 𝑁𝐴 = 𝑛 𝑠𝑖𝑛𝜃 (9) 

 

Where n is the refractive index of the medium in object space and θ is the maximum half-angle of 

the cone of rays that the optical system collects from the object. 

 

However, in paraxial approximation 𝑠𝑖𝑛𝜃 ≈ 𝑡𝑎𝑛𝜃 and Eq.(9) turns to 𝑁𝐴 ≈ 𝑛 𝑡𝑎𝑛𝜃. As a result, 

for 𝑛 = 1 in object space, 

 

 𝑁𝐴 = ℎ/𝑠 (10) 

 

In the following table, one can see what is the maximum error for different values of the 

inclination. 
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Table 1 Error term m for different angles θ and Numerical Aperture NA. 

 

From the table above, it is obvious that the approximation performs poorly as the angle increases 

and the rate of change for the error is not stable but also increases with increasing angle. As far as 

the error stays under 16.67% for angles less than 30° it is safe to say that for that range of angles, 

paraxial approximation gives a decent accuracy. 

 

1.3 ABCD Matrix Theory 
 

ABCD matrix theory connects the input parameters[5] (height and inclination) of a ray in the 

paraxial approximation, to the output parameters of the same ray as it travels through an optical 

system: 

 

 [
𝑦𝑖

𝑛𝑖 ∙ 𝛽𝑖
] = [

𝐴 𝐵
𝐶 𝐷

] ∙ [
𝑦𝑖−1

𝑛𝑖−1 ∙ 𝛽𝑖−1
] (11) 

 

or 

 

 [
𝑦𝑖

𝑛𝑖 ∙ 𝛽𝑖
] = 𝑀 ∙ [

𝑦𝑖−1

𝑛𝑖−1 ∙ 𝛽𝑖−1
] (12) 

 

The above ABCD matrix M describes the optical system and traces the light’s path. When light 

propagates through an optical system, three basic transformations can occur with optical surfaces. 

Light can just displace itself through a surface and can be refracted or reflected by system’s optical 

surfaces. 
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For some complex optical system in which all the above transformations can occur, one can find 

the total matrix that describes this system, simply by multiplying the individual basic interaction 

matrices (the next one times the previous one): 

 

 [
𝑦𝑖

𝑛𝑖 ∙ 𝛽𝑖
] = 𝑀𝑖 ∙ 𝑀𝑖−1 ∙ … ∙ 𝑀1 ∙ [

𝑦1

𝑛1 ∙ 𝛽1
] (13) 

 

Subsequently, the three basic transformation matrices will be derived assuming that paraxial 

approximation applies.  

 

For the following derivations, will be consider the following definition: refractive index n of the 

medium, will be positive when ray displaces to the positive of the optical axis and negative when 

displaces to the negative of the optical axis. 

 

1.3.1 Optical Displacement Transformation Matrix 
 

 

Fig. 3 Optical displacement. 

 

Taking into account Eq.(1), the following can be derived: 
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𝑦𝑖 ≈ 𝑦𝑖−1 + 𝛥𝑧 ∙ 𝛽𝑖−1 

𝛽𝑖 = 𝛽𝑖−1 
(14) 

 

where dz is the algebraic value of the displacement of the ray on z axis. 

 

Assuming that during the displacement there is no change in the index of refraction 𝑛𝑖 of the 

medium, one can get: 

 

 
𝑦𝑖 ≈ 𝑦𝑖−1 +

𝛥𝑧

𝑛𝑖
𝑛𝑖 ∙ 𝛽𝑖−1 

𝑛𝑖𝛽𝑖 = 𝑛𝑖𝛽𝑖−1 
 

(15) 

 

The above equations can be written in matrix representation as follows: 

 

 [
𝑦𝑖

𝑛𝑖 ∙ 𝛽𝑖
] = [

1
𝛥𝑧

𝑛𝑖

0 1

] ∙ [
𝑦𝑖−1

𝑛𝑖 ∙ 𝛽𝑖−1
] (16) 

 

which concludes that the matrix for the displacement of a ray is defined as: 

 

 𝑴 = [
𝟏 𝑫
𝟎 𝟏

] = [𝟏
𝜟𝒛

𝒏
𝟎 𝟏

] (17) 

 

The same result occurs when the ray is displaced to the -z of the optical axis because then 𝛥𝑧 < 0 

and 𝑛 < 0 (by definition). 
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1.3.2 Optical Refraction Transformation Matrix 
 

 

Fig. 4 Optical refraction from spherical surface of radius 𝑅𝑖. 

 

The height of the ray on the spherical interface remains the same, meaning 𝑦𝑖 = 𝑦𝑖−1. 

 

Taking into account Eq.(1) , the following can be derived: 

 

 𝜑 ≈ 𝑦𝑖/𝑅𝑖  (18) 

 

while from Fig. 4 the next two relations can be acquired: 

 

 𝜃𝑖 = 𝛽𝑖 + 𝜑  and  𝜃𝑖−1 = 𝛽𝑖−1 + 𝜑 (19) 

 

From Eq.(1) and Snell’s Law, one can get: 

 

 𝑛𝑖−1𝜃𝑖−1 = 𝑛𝑖𝜃𝑖  (20) 

 

Combining all the above equations, the result written in matrix representation is the following: 
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 [
𝑦𝑖

𝑛𝑖 ∙ 𝛽𝑖
] = [

1 0

−
(𝑛𝑖 − 𝑛𝑖−1)

𝑅𝑖
1
] ∙ [

𝑦𝑖−1

𝑛𝑖−1 ∙ 𝛽𝑖−1
] (21) 

 

which concludes that the matrix describing the refraction of light, in paraxial approximation, from 

spherical surfaces is defined as: 

 

 
𝑴 = [

𝟏 𝟎
−𝑷 𝟏

] = [

𝟏 𝟎

−
(𝒏𝒊 − 𝒏𝒊−𝟏)

𝑹𝒊
𝟏
] 

 

(22) 

 

where 𝑃 = (𝑛𝑖 − 𝑛𝑖−1)/𝑅𝑖 is defined as the optical power of the refractive surface and 𝑅𝑖 can be 

either negative or positive for concave or convex refractive surface respectively. 

 

1.3.3 Optical Reflection Transformation Matrix 
 

 

Fig. 5 Optical reflection from spherical surface of radius 𝑅𝑖. 
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The height of the ray slightly before and slightly after the reflection, remains the same, meaning 

𝑦𝑖 = 𝑦𝑖−1. 

 

Taking into account Eq.(1) , the following can be derived: 

 

 𝜑 ≈ 𝑦𝑖/𝑅𝑖  (23) 

 

while from Fig. 5 the next two relations can be acquired: 

 

 𝛽𝑖−1 = 𝜃𝑖−1 − 𝜑  and  𝛽𝑖 = 𝜃𝑖 + 𝜑 (24) 

 

and by subtracting the two equations of Eq.(24), considering that 𝜃𝑖−1 = 𝜃𝑖, one gets: 

 

 𝛽𝑖 = 2𝜑 + 𝛽𝑖−1 (25) 

 

and while ray remains in the same medium due to reflection, there is no change in the refractive 

index, 𝑛𝑖 = 𝑛𝑖−1. Eq.(25) can be written as: 

 

 𝛽𝑖𝑛𝑖 = 2𝜑𝑛𝑖 + 𝛽𝑖−1𝑛𝑖 (26) 

 

  

Combining all the above, the result written in matrix representation is the following: 

 

 [
𝑦𝑖

𝑛𝑖 ∙ 𝛽𝑖
] = [

1 0
2𝑛𝑖

𝑅𝑖
1] ∙ [

𝑦𝑖−1

𝑛𝑖 ∙ 𝛽𝑖−1
] (27) 

 

indicating that the matrix describing the reflection of light, in paraxial approximation, from 

spherical surfaces is defined as: 

 

 𝑴 = [
𝟏 𝟎

−𝑷 𝟏
] = [

𝟏 𝟎
𝟐𝒏𝒊

𝑹𝒊
𝟏] (28) 
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where 𝑃 = −2𝑛𝑖/𝑅𝑖 again, is defined as the optical power of the reflecting surface and 𝑅𝑖 can be 

either negative or positive for concave or convex refractive surface respectively. 

 

One can conclude to the same result by using refraction transformation matrix of Eq.(22). 

Considering negative and positive refractive indices, as defined earlier, and that the ray stays at 

the same medium (meaning that refractive index does not change): 

 

 𝑀 = [

1 0

−
(𝑛𝑖 − 𝑛𝑖−1)

𝑅𝑖
1
] = [

1 0

−
(−𝑛𝑖 − 𝑛𝑖)

𝑅𝑖
1
] = [

1 0
2𝑛𝑖

𝑅𝑖
1] (29) 

 

When the ray is moving to the negative of the optical axis and gets reflected, the reflection matrix 

is not the same as Eq.(28). Using again refraction transformation matrix of Eq.(22) and considering 

negative and positive refractive indices, as defined earlier, and that the ray stays at the same 

medium: 

 

 𝑀 = [

1 0

−
(𝑛𝑖 − 𝑛𝑖−1)

𝑅𝑖
1
] = [

1 0

−
𝑛𝑖 − (−𝑛𝑖)

𝑅𝑖
1] = [

1 0

−
2𝑛𝑖

𝑅𝑖
1] (30) 

 

Where now 𝑃 = 2𝑛𝑖/𝑅𝑖 is the optical power. 

 

1.3.4 Sign conversions in Bibliography 
 

Unfortunately, the sign of a radius of curvature of a convex and a concave spherical surface is not 

defined in a coherent way in the bibliography [5] [6] [7] [8] . This causes a lot of confusion 

especially when analyzing the behavior of optical cavities, where light repeatedly bounces back 

and forth. This discrepancy in the bibliography makes it very difficult to extract information from 

different sources.  

 

A solution is to use the optical power to describe the subcomponents of an optical system. All 

bibliography is in coherence here, since a converging optical system is described by positive 

optical power, while a diverging optical system by negative optical power. The direction of 

propagation does not affect this property so this is very simple to be implemented in the case of an 

optical cavity. 
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In more detail, for reflection matrices, when the surface of incidence is concave, light converges 

and optical power 𝑃 is always positive, while in the case of convex, light diverges and optical 

power 𝑃 is always negative. 

 

The table that follows makes clear that no matter what description one uses, optical power depends 

only on the surface of incidence. Whether radius of curvature is positive or negative, depends only 

on the optical power, as defined in the present text. 
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Table 2 Optical power depends on the surface of incidence and radius of curvature on the 

optical power. 
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1.3.5 Properties of ABCD Matrices 
 

It is necessary to point out some properties of the ABCD matrices defined above. For square 

matrices of equal size, the following property applies: 

 

 𝑑𝑒𝑡(𝑀1 ∙ 𝑀2 ∙ … ∙ 𝑀𝑖) = 𝑑𝑒𝑡(𝑀1) ∙ 𝑑𝑒𝑡(𝑀2) ∙ … ∙ 𝑑𝑒𝑡 (𝑀𝑖) (31) 

 

For random optical system, the final ABCD matrix 𝑀 that describes it, will derive from several 

multiplications of displacement, refraction and/or reflection matrices.  

 

It is obvious that all determinants of the matrices that were derived is equal to 1 and as a result of 

Eq.(31), every ABCD matrix 𝑀 that describes a random optical system, in paraxial approximation, 

will have the following property: 

 

 𝒅𝒆𝒕(𝑴) = 𝟏 (32) 

 

This is a very useful relation, which allows to check the validity of a resultant matrix which 

describes some optical system. 
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Chapter 2 – Optical Cavities 
 

An optical cavity (or optical resonator) is comprised of two mirrors (curved or not) with high 

reflectivity, placed one opposite to the other.  As a result, when light enters the cavity, is being 

reflected back and forth due to multiple reflections on both mirrors and light performs some kind 

of oscillation inside it.  

 

 

Fig. 6 An optical cavity. 

 

2.1 Stability Condition for Optical Cavities 
 

Stable cavities are defined as those that allow light to remain inside them after multiple reflections, 

while unstable cavities make light diverge and leave the cavity after multiple reflections. 

 

In geometrical optics, when the ray starts from one mirror and reaches back to the same mirror 

again, one roundtrip has been performed. In order to treat stability, unit cell is defined as the total 

matrix that represents one roundtrip inside the cavity. 

 

The general case will be considered here, meaning that mirrors will be of the same type (either 

both concave or both convex) or of different types (concave and convex). This means that radii of 

curvature that will be used, have undetermined sign in order for the general case to be covered. 
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In the next images, all possible types of cavities are depicted and the ray moving from mirror 2 

and back again has completed one roundtrip. 

 

 

Fig. 7 Two different types of cavities, (a) concave-concave and (b) concave-convex. 
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Fig. 8 Two different types of cavities, (a) convex-convex and (b) convex-concave. 

 

 

In all the cases above, the ray is confined inside an optical cavity of length 𝐿 ≡ 𝐸𝐻 > 0, 

propagating in air - index of refraction 𝑛 = 1. It starts from mirror 2 on the left following path (1) 

and gets reflected from mirror 1, which has radius of curvature 𝑅1 (algebraic value). Then follows 

path (3) until it reaches back to mirror 2 again, which has radius of curvature 𝑅2 (algebraic value) 

and get reflected. The total path of the ray that was described, constitutes one roundtrip (or else 

one unit cell) for the ray. 

 

To find the total matrix that describes one roundtrip for the ray, the total path is broken to one 

displacement matrix for path 1, followed by a reflection matrix for mirror 1, again a displacement 

matrix for path 2, ending with a reflection matrix for mirror 2. The ABCD matrix representation 

follows: 
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 𝑀 = [

1 0

−
2

𝑅2
1] ∙ [

1 𝐿
0 1

] ∙ [

1 0
2

𝑅1
1] ∙ [

1 𝐿
0 1

] (33) 

 

and by simplifying the total matrix, the result is: 

 

 𝑀 =

[
 
 
 
 
 𝑅1 + 2𝐿

𝑅1

2𝐿𝑅1 + 2𝐿2

𝑅1

2𝑅2 − 2𝑅1 − 4𝐿

𝑅1𝑅2

(𝑅1 + 2𝐿)𝑅2 − 4𝐿𝑅1 − 4𝐿2

𝑅1𝑅2

 ]
 
 
 
 
 

= [
𝐴 𝐵
𝐶 𝐷

] (34) 

 

What follows, are the equations for 2 consecutive unit cells (index of refraction 𝑛 = 1): 

 

 [
𝑦𝑚+1

𝛽𝑚+1
] = [

𝐴 𝐵
𝐶 𝐷

] ∙ [
𝑦𝑚

𝛽𝑚
] (35) 

 

 [
𝑦𝑚+2

𝛽𝑚+2
] = [

𝐴 𝐵
𝐶 𝐷

] ∙ [
𝑦𝑚+1

𝛽𝑚+1
] (36) 

 

with  𝑚 = 0, 1, 2, … .  

 

Starting from Eq.(35), 

 

 {
𝑦𝑚+1 = 𝐴𝑦𝑚 + 𝐵𝛽𝑚

𝛽𝑚+1 = 𝐶𝑦𝑚 + 𝐷𝛽𝑚
⇒ {

𝑦𝑚+1 − 𝐴𝑦𝑚 = 𝐵𝛽𝑚

𝛽𝑚+1 − 𝐶𝑦𝑚 = 𝐷𝛽𝑚
 (37) 

 

and dividing both equations to eliminate 𝛽𝑚 , 

 

 
𝑦𝑚+1 − 𝐴𝑦𝑚

𝛽𝑚+1 − 𝐶𝑦𝑚
=

𝐵

𝐷
  (38) 

 

the result is: 
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 𝐵𝛽𝑚+1 − 𝐵𝐶𝑦𝑚 = 𝐷(𝑦𝑚+1 − 𝐴𝑦𝑚) (39) 

 

The 𝐴𝑦𝑚+1 term is added on both sides for later use, 

 

 𝐴𝑦𝑚+1 + 𝐵𝛽𝑚+1 − 𝐵𝐶𝑦𝑚 = 𝐴𝑦𝑚+1 + 𝐷(𝑦𝑚+1 − 𝐴𝑦𝑚) (40) 

 

The equation above is a sequence that involves both the ray height and the inclination. Proceeding 

with Eq.(36), only the first equation that arises is needed in order to eliminate inclination from the 

sequence, 

 

 𝑦𝑚+2 = 𝐴𝑦𝑚+1 + 𝐵𝛽𝑚+1 (41) 

 

Substitute Eq.(41) into Eq.(40) the result is: 

 

 𝑦𝑚+2 − (𝐴 + 𝐷)𝑦𝑚+1 + (𝐴𝐷 − 𝐵𝐶)𝑦𝑚 = 0  (42) 

 

But from Eq.(32), (𝐴𝐷 − 𝐵𝐶) = 𝑑𝑒𝑡(𝑀) = 1, and Eq.(1.42) can be written as: 

 

 𝑦𝑚+2 − (𝐴 + 𝐷)𝑦𝑚+1 + 𝑦𝑚 = 0 (43) 

 

The sequence of Eq.(43) is the discrete analogous of the harmonic oscillator differential 

equation[5]. As a result, exponential solutions are expected, that will either have real exponent and 

in this case the ray will deviate from the cavity, or imaginary one and the ray will oscillate inside 

the cavity. So, imaginary solutions must be imposed. 

 

 Solution:   𝑦𝑚 = 𝑦0 ∙ 𝑒𝑖∙𝑚∙𝜃 (44) 

 

Imposing Eq.(42) into Eq.(41),  

 

 𝑦0 ∙ 𝑒𝑖∙(𝑚+2)∙𝜃 − (𝐴 + 𝐷) ∙ 𝑦0 ∙ 𝑒𝑖∙(𝑚+1)∙𝜃 + 𝑦0 ∙ 𝑒𝑖∙𝑚∙𝜃 = 0  (45) 

 

and factorizing, 
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 𝑦0 ∙ 𝑒𝑖∙𝑚∙𝜃 ∙ (𝑒𝑖∙2∙𝜃 − (𝐴 + 𝐷) ∙ 𝑒𝑖∙𝜃 + 1) = 0  (46) 

 

the result is: 

 

 (𝑒𝑖∙𝜃)
2
− (𝐴 + 𝐷) ∙ 𝑒𝑖∙𝜃 + 1 = 0  (47) 

 

which is a quadratic equation with 𝑒𝑖∙𝜃 as variable and the discriminant is, 

 

 𝛥 = (𝐴 + 𝐷)2 − 4  (48) 

 

Because 𝑒𝑖∙𝜃 = 𝑐𝑜𝑠𝜃 + 𝑖 ∙ 𝑠𝑖𝑛𝜃 is in general an imaginary number (𝜖 ℂ), the discriminant must be 

negative number (𝛥 < 0) and the solutions are, 

 

 𝑒± 𝑖∙𝜃 =
(𝐴 + 𝐷) ± 𝑖 ∙ √4 − (𝐴 + 𝐷)2

2
 

  (49) 

 

or written in another form, 

 

 𝑒± 𝑖∙𝜃 =
(𝐴 + 𝐷)

2
± 𝑖 ∙ √1 − (

𝐴 + 𝐷

2
)
2

= 𝑐𝑜𝑠𝜃 ± 𝑖 ∙ 𝑠𝑖𝑛𝜃 (50) 

 

Consequently, from Eq.(42) and Eq.(48) the height of the ray inside the cavity, measured with 

respect to the optical axis is: 

 

 𝑦𝑚 = 𝑦0 ∙ (
(𝐴 + 𝐷)

2
± 𝑖 ∙ √1 − (

𝐴 + 𝐷

2
)
2

 )

𝑚

 (51) 

 

or else, 

 

 𝑦𝑚 = 𝑦0 ∙ (𝑐𝑜𝑠𝜃 ± 𝑖 ∙ 𝑠𝑖𝑛𝜃 )𝑚 (52) 
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The real part of the solution in Eq.(48) is of interest which is equal to a cosine term, for which the 

well-known inequality −1 ≤ 𝑐𝑜𝑠𝜃 ≤ 1  applies, resulting in: 

 

 −1 ≤
𝐴 + 𝐷

2
≤ 1  (53) 

 

or by adding 1 in all parts, 

 

 0 ≤
𝐴 + 𝐷 + 2

4
≤ 1  (54) 

 

Using the values of A and D from Eq.(32), the result is: 

 

 0 ≤
(𝑅1 + 𝐿)𝑅2 − 𝐿𝑅1 − 𝐿2

𝑅1𝑅2
≤ 1  (55) 

 

and by factorizing,  

 

 0 ≤ (1 +
𝐿

𝑅1
) ∙ (1 −

𝐿

𝑅2
) ≤ 1  (56) 

 

Eq.(54) is the stability condition for random cavities and can be written as: 

 

 0 ≤ 𝑔1 ∙ 𝑔2 ≤ 1 (57) 

 

Where 𝑔1 = (1 +
𝐿

𝑅1
) , 𝑔2 = (1 −

𝐿

𝑅2
) , 𝐿 = length of the cavity and 𝑅𝑖= radius of curvature of 

each mirror taking either positive or negative values depending on the occasion as described in 

Table 2. 
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2.1.1 Mapping for Stable Cavities 
 

The following plot of Eq.(57) shows in which regions stable cavities exist , for different values of 

the parameters 𝑔1 and 𝑔2. 

 

 

Fig. 9 Mapping for stable cavities - 𝑔2 versus 𝑔1 

 

Moreover, is also useful to map stable cavities by using Eq.(56). The following plot shows the 

stable regions for different values of both radii of curvature as they are defined in Table 2. 
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Fig. 10 Mapping for stable cavities - 𝑅2 versus 𝑅1 

 

In the figures above, two types of stable cavities are pointed out, spherical cavity and confocal 

cavity with the later being a strong candidate to be tested experimentally (in the next chapter this 

will be more obvious). Furthermore, the two plane mirrors cavity is stated too, but is stable only 

under one extra condition, that the rays must always be parallel to the optical axis in order to 

remain inside the cavity. 

 

The following figures depict the geometry of the pointed cavities. 
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Fig. 11 Geometry of confocal cavity. 

 

 

Fig. 12 Geometry of spherical cavity. 
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2.1.2 Geometrical Operation of Cavities 
 

In this section, some numerical simulations [Ref: D. G. Papazoglou (2020)] will be presented in 

order to visualize how light rays oscillate or not inside a cavity. These numerical simulations were 

created in Maxima [9], a computer algebra system, which is a free computer software. The code 

that was developed to perform these numerical simulations uses ABCD matrix theory. 

 

In the following examples, rays will enter different types of cavities (with 𝑅1 being the radius of 

curvature of the right mirror, 𝑅2 of the left mirror and 𝐿 the cavity length), in different 

configurations (different initial height 𝑦0 and different initial inclination 𝛽0 both with respect to 

the optical axis). 

 

Example 1 

Confocal cavity with |𝑅1| = |𝑅2| = 𝐿 = 10 𝑐𝑚 . Rays enter the cavity at 𝑦0 = 1 𝑐𝑚 without some 

initial inclination, 𝛽0 = 0,  

 

 

Fig. 13 Path of the rays inside the cavity after 50 roundtrips. 
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Fig. 14 Height of the ray inside the cavity as a function of the number of roundtrips. 

 

In this configuration it is obvious that the cavity is stable and rays oscillate inside the cavity with 

a period of two roundtrips, meaning that every two roundtrips the rays reach at the same height. 

 

Example 2 

Confocal cavity with |𝑅1| = |𝑅2| = 𝐿 = 10 𝑐𝑚 . Rays enter the cavity on the optical axis, 𝑦0 = 0, 

with initial inclination of 𝛽0 = 0.4 𝑟𝑎𝑑,  
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Fig. 15 Path of the rays inside the cavity after 50 roundtrips. 

 

 

Fig. 16 Height of the ray inside the cavity as a function of the number of roundtrips. 

 



35 
 

In this configuration, light rays are always on the same initial height after each roundtrip and the 

light is limited inside the cavity. 

 

Example 3 

Cavity with one flat mirror , |𝑅2| → ∞ , the other curved with radius of curvature of |𝑅1| = 40 𝑐𝑚 

and cavity length of 𝐿 = 10𝑐𝑚. Rays enter the cavity at 𝑦0 = 0.5 𝑐𝑚 with initial inclination of 

𝛽0 = 0.1 𝑟𝑎𝑑,  

 

 

Fig. 17 Path of the rays inside the cavity after 50 roundtrips. 
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Fig. 18 Height of the ray inside the cavity as a function of the number of roundtrips. 

 

This cavity is a stable one and from Fig. 18 it is obvious that the rays have a period of six 

roundtrips. 

 

Example 4 

Spherical cavity with |𝑅1| = |𝑅2| = 5 𝑐𝑚 and cavity length of 𝐿 = 10 𝑐𝑚 . Rays enter the cavity 

at 𝑦0 = 0.5 𝑐𝑚 with initial inclination of 𝛽0 = −0.1 𝑟𝑎𝑑,   
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Fig. 19 Path of the rays inside the cavity after 50 roundtrips. 

 

 

 

Fig. 20 Height of the ray inside the cavity as a function of the number of roundtrips. 
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From more simulations on spherical cavities, it was made clear that light is confined inside these 

cavities if and only if it enters so that its path passes from the middle of the optical axis at L/2. 

Only then a spherical cavity is stable.  

 

Example 5 

Spherical cavity with |𝑅1| = |𝑅2| = 5 𝑐𝑚 and cavity length of 𝐿 = 10 𝑐𝑚 . Rays enter the cavity 

at 𝑦0 = 0.9 𝑐𝑚 with initial inclination of 𝛽0 = −0.1 𝑟𝑎𝑑,   

 

 

Fig. 21 Path of the rays inside the cavity after 50 roundtrips. 

 

As the path of the rays does not pass through the middle of the optical axis at L/2, light will 

eventually leave the cavity after some roundtrips. In these cases spherical cavity is not stable. 

 

Example 6 

Random cavity with |𝑅1| = 11 𝑐𝑚 , |𝑅2| = 12 𝑐𝑚 and cavity length of 𝐿 = (|𝑅1| + |𝑅2|)/3 . 

Rays enter the cavity at 𝑦0 = 0.9 𝑐𝑚 with initial inclination of 𝛽0 = 0.3 𝑟𝑎𝑑,   
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Fig. 22 Path of the rays inside the cavity after 100 roundtrips. 

 

 

Fig. 23 Height of the ray inside the cavity as a function of the number of roundtrips. 

 

The rays inside this cavity seem to follow some periodicity and the cavity is a stable one. 
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2.2 Gaussian Beams 
 

In most cases of laser light beams, the Gaussian beam profile describes the light that is emitted. 

Gaussian beam is a monochromatic electromagnetic wave whose both transverse electric and 

transverse magnetic field amplitudes, and as a result its intensity profile, are described by a 

Gaussian function. 

 

In what is to follow, the space distribution function will be derived in paraxial approximation. 

 

The time independent wave equation is given by: 

 

 ∇2𝐸 + 𝑘2𝐸 = 0 (58) 

 

Where 𝑘 = 2𝜋𝑛/𝜆0 is the wavenumber and n is the index of refraction of the medium.  

 

For the spatial solution of the above equation, one can think that the wave will have some 

amplitude 𝐸𝑜 , it will propagate almost as a plane wave exp (𝑖𝑘𝑧) and almost means that there will 

be a factor of deviation 𝜓(𝑥, 𝑦, 𝑧) from plane wave[5]. As a result, the expected solution will take 

the following form: 

 

 𝐸(𝑥, 𝑦, 𝑧) = 𝐸𝑜𝜓(𝑥, 𝑦, 𝑧)exp(−𝑖𝑘𝑧) (59) 

 

Substituting Eq.(59) to the wave equation Eq.(58) , the result is: 

 

 
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
− 𝑖2𝑘

𝜕𝜓

𝜕𝑧
= 0 (60) 

 

But in paraxial approximation the term 𝜕2𝜓/𝜕𝑧2 is small compared to the rest of the terms, and 

Eq.(60) can be simplified to the paraxial wave equation: 

 

 
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
− 𝑖2𝑘

𝜕𝜓

𝜕𝑧
= 0 (61) 
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2.2.1 Propagation of a Gaussian Beam 
 

Assuming cylindrical symmetry, the beam profile will be a function of the radial coordinate  𝑟 =

√𝑥2 + 𝑦2 : 

 

 𝜓0 = 𝑒𝑥𝑝 {−𝑖 [𝑃(𝑧) +
𝑘𝑟2

2𝑞(𝑧)
]} (62) 

 

The deviation factor 𝜓0 should contain a function 𝑃(𝑧) which will change the phase of the wave 

as it propagates through z axis and also a function 𝑞(𝑧) in the denominator of the Gaussian 

profile to change the field as it spreads out with r. Eq.(62) will be imposed to the differential 

equation Eq.(61) and the functions 𝑃(𝑧) and 𝑞(𝑧), which are functions of the propagation 

distance remain to be determined. The result is: 

 

 𝜓0 {[(
𝑘

𝑞(𝑧)
)
2

(𝑞′(𝑧) − 1)] 𝑟2 − 2𝑘 [𝑃′(𝑧) +
𝑖

𝑞(𝑧)
]} = 0 (63) 

 

In order Eq.(63) to be valid ∀𝑟, the following relations must occur: 

 

 𝑞′(𝑧) − 1 = 0 (64) 

 

and 

 

 𝑃′(𝑧) +
𝑖

𝑞(𝑧)
= 0 (65) 

 

By integrating Eq.(64) the function of q is derived: 

 

 𝑞(𝑧) = 𝑧 + 𝑞(𝑧 = 0) (66) 

 

Eq.(62) has to contain a real part for Electric field of Eq.(59) to change in the transverse plane 

xy. This means that 𝑞(𝑧 = 0) has to be an imaginary number: 

 

 𝑞(𝑧 = 0) = 𝑞0 = 𝑖𝑧0 (67) 

 

Calculating Eq.(62) on 𝑧 = 0: 
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 𝜓0(𝑧 = 0) = 𝑒𝑥𝑝[−𝑖𝑃(𝑧 = 0)]𝑒𝑥𝑝 (−
𝑘𝑟2

2𝑧0
) (68) 

 

and the following quantity is defined, considering that the wavenumber 𝑘 = 2𝜋𝑛/𝜆0: 

 

 𝑤0
2 =

2𝑧0

𝑘
=

𝜆0𝑧0

𝜋𝑛
 (69) 

 

or 

 

 𝑧0 =
𝜋𝑛𝑤0

2

𝜆0
 (70) 

 

where 𝑤0 is known as the minimum spot size (waist on z = 0 ) of the beam and 𝑧0 (also symbolized 

in bibliography as 𝑧𝑅 ) is known as the Rayleigh range. 

 

Considering Eq.(67) the inverse of Eq.(66) is computed: 

 

 
1

𝑞(𝑧)
=

1

𝑅(𝑧)
− 𝑖

𝜆0

𝜋𝑛𝑤2(𝑧)
 (71) 

 

where the two new defined functions 𝑅(𝑧) and 𝑤(𝑧) are the radius of curvature of the beam and 

the waist of the beam, respectively: 

 

 𝑅(𝑧) = 𝑧 [1 + (
𝑧0

𝑧
)
2

] = 𝑧 [1 + (
𝜋𝑛𝑤0

2

𝑧𝜆0
)

2

] (72) 

 

 𝑤2(𝑧) = 𝑤0
2 [1 + (

𝑧

𝑧0
)

2

] = 𝑤0
2 [1 + (

𝑧𝜆0

𝜋𝑛𝑤0
2)

2

] (73) 

 

Finally, 𝑃(𝑧) can be determined by integrating Eq.(65): 

 

 𝑖𝑃(𝑧) = 𝑙𝑛 [1 − 𝑖 (
𝑧

𝑧0
)] (74) 
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Which can be simplified considering polar coordinates of complex numbers: 𝑐 = |𝑐|𝑒𝑖𝜃, where 

𝑐 = 𝑎 + 𝑖𝑏 , |𝑐| = √𝑎2 + 𝑏2 and 𝜃 = 𝑎𝑡𝑎𝑛 (
𝑏

𝑎
): 

 

 𝑖𝑃(𝑧) = 𝑙𝑛 [1 + (
𝑧

𝑧0
)
2

]

1/2

− 𝑖 𝑎𝑡𝑎𝑛 (
𝑧

𝑧0
) (75) 

 

or using Eq.(73): 

 

 𝑖𝑃(𝑧) = 𝑙𝑛 [
𝑤(𝑧)

𝑤0
] − 𝑖 𝑎𝑡𝑎𝑛 (

𝑧

𝑧0
) (76) 

 

All parameters of Eq.(62) have been calculated and the free space solution under paraxial 

approximation (or also known as fundamental Gaussian mode) of the Electric field is: 

 

 𝐸(𝑥, 𝑦, 𝑧) = 𝐸𝑜

𝑤0

𝑤(𝑧)
𝑒𝑥𝑝 [−

𝑟2

𝑤2(𝑧)
] 𝑒𝑥𝑝 {−𝑖 [𝑘𝑧 +

𝑘𝑟2

2𝑅(𝑧)
− 𝑎𝑡𝑎𝑛 (

𝑧

𝑧0

)]} (77) 

 

In the following image, one can clearly see the geometrical meaning of all the parameters defined 

earlier while the beam spreads. 

 

 

Fig. 24 Geometrical parameters of a Gaussian beam as it propagates (taken from [4]). 

 

2.2.2 Properties of Gaussian Beams 
 

Some important things that have to be pointed are following. 
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Twice the value of the polar coordinate r in which the Electric field of Eq.(77) drops to half of it’s 

total value, is named as FWHM (Full Width at Half Maximum), and is defined as: 

 

 𝐹𝑊𝐻𝑀 = 2√𝑙𝑛2 𝑤(𝑧) (78) 

 

In most bibliographies, this value is referred instead of the beam waist, but they are linearly 

analogous quantities and there is not much difference on which one refers to. 

 

Rayleigh range 𝑧0 of Eq.(70) is the point on the optical axis, where the surface of the beam’s spot 

on a transverse plane, gets doubled, or the point where the waist of the beam gets 𝑤(𝑧0) = √2𝑤0. 

 

Fig. 13 shows the dependence of Rayleigh range as a function of the minimum waist for different 

wavelengths. 

 

 

Fig. 25 Dependence of Rayleigh range with the beam waist for different wavelengths (taken from 

[4] ). 

 

It’s clear that for increasing values of wavelength of the same waist, the Rayleigh range decreases, 

meaning that higher wavelength beams spread faster. To make this point clear, we have performed 
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numerical simulations using Virtual Lab wave propagation code (wP) which models the 

propagation of optical waves in a 1D+1 scheme using the angular spectrum approach [Ref: wP 

Virtual Lab open source wave propagator, D. G. Papazoglou (2015)]. 

 

 

Fig. 26 In all figures, intensities come from Electric fields that have the same FWHM=20mm 

(same waste) on z=0. a) refers to 200nm, b) to 400nm and c) to 800nm. Vertical axis z refers to 

the propagation axis and the horizontal is a transverse x direction to the propagation.  

 

Furthermore, from Fig. 26, one more information can be extracted, that for the same wavelength, 

a beam of smaller waist, spreads faster than one with a higher waist. The following simulations 

[Ref: wP Virtual Lab open source wave propagator, D. G. Papazoglou (2015)], make this point 

clear. 
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Fig. 27 All figures are of the same wavelength λ=200nm. The first three vertical figures named 

as a) refer to a FWHM=2.5mm (minimum waist on z=0), while those in b) to a FWHM=10mm. 

Vertical axis z refers to the propagation axis the horizontal is a transverse x direction to the 

propagation. 
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2.2.3 ABCD Matrix Theory for Gaussian Beams  
 

It is necessary to state that ABCD matrix theory, as described in paragraph 1.3, applies also to 

Gaussian beams giving information about the evolution of the beam as it propagates through an 

optical system.  

 

For a Gaussian beam propagating through an optical system, from 𝑧1 to 𝑧2 , of a given ray transfer 

matrix [
𝐴 𝐵
𝐶 𝐷

], the following equation describes its propagation, 

 

 [
𝑞(𝑧2)

1
] = [

𝐴 𝐵
𝐶 𝐷

] [
𝑞(𝑧1)

1
] (79) 

 

where 𝑞(𝑧) is the complex quantity for Gaussian beams of Eq.(66). Through matrix multiplication 

one can result in the following equations, 

 

 {
𝑞(𝑧2) = 𝐴𝑞(𝑧1) + 𝐵

1 = 𝐶𝑞(𝑧1) + 𝐷
 (80) 

    

Dividing these two equations by parts, the result is, 

 

 𝑞(𝑧2) =
𝐴𝑞(𝑧1) + 𝐵

𝐶𝑞(𝑧1) + 𝐷
 (81) 

 

From Eq.(71) it is obvious that by knowing the complex quantity q at some point z, it is possible 

to find the radius of curvature R and the waist w of the Gaussian beam of wavelength 𝜆0 , at this 

specific point z. An example follows to make things clear. 

 

For a Gaussian beam being displaced by distance d in air (n=1) from 𝑧1 to 𝑧2 , the ray transfer 

matrix is [
1 𝑑
0 1

]. As a result, Eq.(81) yields, 

 

 𝑞(𝑧2) = 𝑞(𝑧1) + 𝑑 (82) 
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Meaning that the complex quantity 𝑞(𝑧) have changed only by its’ real part by d, as the beam 

propagated from 𝑧1 to 𝑧2. 

 

2.3 Resonant Optical Cavities 
 

2.3.1 Modes Inside Cavities 
 

Gaussian beams propagating inside cavities can be described by certain wave functions depending 

the way they propagate. If a Gaussian beam inside a cavity displays cylindrical symmetry, then 

Eq.(77) is the one that describes that kind of Gaussian beam. In this section, different ways of 

propagation of a Gaussian beam inside a cavity, will be introduced. These different ways of 

propagation are known as Transverse Electric and Magnetic modes or 𝑇𝐸𝑀𝑛𝑚 modes and the 

fundamental mode 𝑇𝐸𝑀00 is given by Eq.(77). 

 

By looking for solutions of Eq.(61) with no cylindrical symmetry (∇𝜑
2 ≠ 0), one can get the higher 

modes 𝑇𝐸𝑀𝑛,𝑚: 

 

 

𝐸(𝑥, 𝑦, 𝑧) = 𝐸𝑜𝐻𝑛 [
√2𝑥

𝑤(𝑧)
]𝐻𝑚 [

√2𝑦

𝑤(𝑧)
]

𝑤0

𝑤(𝑧)
𝑒𝑥𝑝 [−

𝑟2

𝑤2(𝑧)
] 

𝑒𝑥𝑝 {−𝑖 [𝑘𝑧 +
𝑘𝑟2

2𝑅(𝑧)
− (1 + 𝑛 + 𝑚)𝑎𝑡𝑎𝑛 (

𝑧

𝑧0

)]} 

(83) 

 

with n and m being integers (𝑛,𝑚 = 0,1,2, … ) and they refer to the transverse directions (x and 

y) to the propagation axis z. 

 

The last exponential term of Eq.(83) denotes the phase of propagation which accumulates like a 

plane wave (as kz), but also has an additional Gouy phase that depends on the mode numbers ( 

−(1 + 𝑚 + 𝑝)𝑎𝑡𝑎𝑛(𝑧/𝑧0) ) and a radial curvature term ( 𝑘𝑟2/2𝑅(𝑧) ). 

 

where 𝐻𝑝(𝑥) = (−1)𝑝𝑒𝑥2 𝑑𝑝𝑒−𝑥2

𝑑𝑥𝑝  are the Hermite polynomials of order p, some of which are stated 

below. 
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𝐻0(𝑥) = 1  
𝐻1(𝑥) = 2𝑥  
𝐻2(𝑥) = 4𝑥2 − 2  
𝐻3(𝑥) = 8𝑥3 − 12𝑥   
𝐻4(𝑥) = 16𝑥4 − 48𝑥2 + 12 

(84) 

 

Indexes n and m in Eq.(83) indicate how many nodes do the polynomials exhibit in x and y 

direction, respectively. In the following figure, some of the 𝑇𝐸𝑀𝑛,𝑚 modes are depicted. 

 

 

Fig. 28 Graphical representation of some of the  𝑇𝐸𝑀𝑛,𝑚 modes. (taken from [10] ) 
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2.3.2 Longitudinal/Axial Resonant Modes 
 

When light enters an optical cavity, it experiences multiple reflections from both mirrors. By 

considering the light inside the cavity as just a plane wave, in one round trip, the factor of phase 

change of the wave is equal to: 

 

 exp (−𝑖𝑘2𝐿) (85) 

 

where k is the wavevector and L is the cavity length.  

 

If the phase change is an integral multiple of 2π this means that the cavity is on resonance. This is 

called resonance condition: 

 

 2𝑘𝐿 = 𝑞2𝜋 (86) 

 

where q is an integer number (𝑞 = 1,2… ). 

 

Considering that 𝑘 = 2𝜋𝑛/𝜆0 and 𝑛 = 𝜆0/𝜆  , Eq.(86) can be written as: 

 

 𝐿 =
𝑞𝜆

2
 (87) 

 

which is a familiar result for someone that has studied wave mechanics. It reminds the condition 

for standing waves of some wavelength λ on a string of length L. Indeed, this is the case. Eq.(87) 

states that there must fit integral multiples of half the wavelength between the cavity mirrors. This 

is what the following image depicts. 
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Fig. 29 Longitudinal/axial modes inside a cavity (taken from [11]). 

 

In terms of frequency, considering that 𝜆 = 𝑐/𝑣 and 𝑐 = 𝑐𝑜/𝑛, Eq.(87) results in, 

 

 
𝑣 = 𝑞

𝑐0

2𝑛𝐿
 

 
(88) 

 

and for two consecutive resonant frequencies, 

 

 𝛥𝑣 = 𝑣𝑞+1 − 𝑞𝑣 =
𝑐0

2𝑛𝐿
 (89) 

 

This spacing between two resonant frequencies in known as FSR (Free Spectral Range): 

 

 𝐹𝑆𝑅 =
𝑐0

2𝑛𝐿
 (90) 

 

In the following picture, there is a schematic description of the resonant frequencies. 
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Fig. 30 Red lines represent only three of the longitudinal/axial resonant modes inside a cavity. 

 

2.3.3 Higher-Order Resonant Modes 
 

By considering that the light inside the cavity has the general form of Eq.(83), higher-order modes 

arise, known as Hermite-Gaussian modes.  

 

When cavity is on resonance, light described by Eq.(83) reproduces itself in both relative shape 

and phase after one round trip. Essentially, this occurs when a cavity’s mirrors match exactly the 

beam wavefront. These boundary conditions fix the focus relative to the mirror positions. In the 

following image, a resonant cavity is depicted. At 𝑧 = 0 is taken to be the beam waist or the focus 

inside the cavity and 𝐿 = 𝑧2 + 𝑧1 is the length of the cavity. At points 𝑧2 and −𝑧1 the radius of 

curvature of the beam, perfectly fits the curvature of the two mirrors.  
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Fig. 31 Wavefronts (dashed lines) inside a resonant cavity. 

 

In this case, the effect of the mirrors is to simply reverse the wavevector k of the light beam. After 

one roundtrip, light returns to itself. 

 

From Eq.(83) the phase of the wave inside the cavity will be: 

 

 𝜑(𝑟, 𝑧) = 𝑘𝑧 +
𝑘𝑟2

2𝑅(𝑧)
− (1 + 𝑛 + 𝑚)𝑎𝑡𝑎𝑛 (

𝑧

𝑧0
) (91) 

 

Working on the optical axis (𝑟 = 0), the phase change in one roundtrip, is twice the phase change 

accumulated from 𝑧1 to 𝑧2: 

 

 𝛥𝜑𝑟𝑡 = 2[𝜑(0, 𝑧2) − 𝜑(0,−𝑧1)] (92) 

 

or, 

 

 𝛥𝜑𝑟𝑡 = 2𝑘𝐿 − 2(1 + 𝑛 + 𝑚) [𝑎𝑡𝑎𝑛 (
𝑧2

𝑧0
) − 𝑎𝑡𝑎𝑛 (

𝑧1

𝑧0
)] (93) 
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As stated in Eq.(86), for resonant cavities, the phase change for one roundtrip must be integral 

multiple of 2π, and by rearranging Eq.(93): 

 

 2𝑘𝐿 = 𝑞2𝜋 + 2(1 + 𝑛 + 𝑚) [𝑎𝑡𝑎𝑛 (
𝑧2

𝑧0
) − 𝑎𝑡𝑎𝑛 (

𝑧1

𝑧0
)] (94) 

 

But 𝑘𝐿 = 2𝜋𝑛𝐿/𝜆0 = 2𝜋𝑛𝑣𝐿/𝑐0 and from Eq.(90) 𝑘𝐿 = 𝜋𝑛/𝐹𝑆𝑅 . As a result, Eq.(93) gets the 

following form: 

 

 𝑣 = 𝐹𝑆𝑅 {𝑞 +
(1 + 𝑛 + 𝑚)

𝜋
[𝑎𝑡𝑎𝑛 (

𝑧2

𝑧0
) − 𝑎𝑡𝑎𝑛 (

𝑧1

𝑧0
)]} (95) 

 

In order to simplify the Gouy phase terms, Eq.(72) will be used, calculated in 𝑧2 and −𝑧1, 

accompanied by the length of the cavity 𝐿 = 𝑧2 + 𝑧1: 

 

 𝑅(−𝑧1) = −𝑅1 = −𝑧1 [1 + (
𝑧0

𝑧1
)
2

] (96) 

 

 𝑅(𝑧2) = 𝑅2 = 𝑧2 [1 + (
𝑧0

𝑧2
)

2

] (97) 

 

 𝐿 = 𝑧2 + 𝑧1 (98) 

 

The equations above, comprise a 3x3 system that can be solved. The results are: 

 

 𝑧0
2 =

𝑑(𝑅1 − 𝐿)(𝑅2 − 𝐿)(𝑅1 + 𝑅2 − 𝐿)

(𝑅1 + 𝑅2 − 2𝐿)2
 (99) 

 

 𝑧1 =
𝐿(𝑅2 − 𝐿)

𝑅1 + 𝑅2 − 2𝐿
 (100) 

 

 𝑧2 =
𝐿(𝑅1 − 𝐿)

𝑅1 + 𝑅2 − 2𝐿
 (101) 

 

Using these results in Eq.(95) and simplifying it further, one can get: 
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 𝑣 = 𝐹𝑆𝑅 {𝑞 +
(1 + 𝑛 + 𝑚)

𝜋
𝑎𝑐𝑜𝑠 [√𝑠𝑖𝑔𝑛 [2𝐿 (

𝑅1 + 𝑅2

2𝐿
− 1)] (1 −

𝐿

𝑅1
) (1 −

𝐿

𝑅2
)]} (102) 

 

Looking at some special case, where the first mirror is flat and is located on 𝑧 = 0, the second is 

curved with radius 𝑅2 located on 𝑧2 = 𝐿 and that the cavity is resonant (phase fronts matches exactly 

the mirror curvatures), one can get: 

 

 𝑅(𝑧2) = 𝑅2 = 𝐿 [1 + (
𝑧0

𝐿
)
2

] (103) 

 

and solving for 𝑧0 : 

 

 𝑧0 = √(𝐿𝑅2) (1 −
𝐿

𝑅2
) (104) 

 

But, 𝑧0 is the Rayleigh range, a real and measurable quantity. This means that: 

 

 1 −
𝐿

𝑅2
≥ 0 (105) 

 

or 

 

 
𝑅2

𝐿
≥ 1 (106) 

 

In a similar way, the same relation can be argued for: 

 

 
𝑅1

𝐿
≥ 1 (107) 

 

Adding up Eq.(106) and Eq.(107) , the result is: 
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𝑅1 + 𝑅2

2𝐿
− 1 > 0 (108) 

 

And now it is clear that 𝑠𝑖𝑔𝑛 [2𝐿 (
𝑅1+𝑅2

2𝐿
− 1)] = +1 in Eq.(102). Thus, the final relation for higher order 

modes is: 

 

 𝑣𝑞𝑛𝑚 = 𝐹𝑆𝑅 {𝑞 +
(1 + 𝑛 + 𝑚)

𝜋
𝑎𝑐𝑜𝑠 [√(1 −

𝐿

𝑅1
) (1 −

𝐿

𝑅2
)]} (109) 

 

or using 𝑔𝑖 = 1 −
𝐿

𝑅𝑖
 as it was defined in ABCD matrices for the stability condition 0 ≤ 𝑔1𝑔2 ≤ 1: 

 

 𝑣𝑞𝑛𝑚 = 𝐹𝑆𝑅 {𝑞 +
(1 + 𝑛 + 𝑚)

𝜋
𝑎𝑐𝑜𝑠(√𝑔1𝑔2)} (110) 

 

 

where, index q refers to the longitudinal modes and indices n and m to the transverse x and y 

modes.  

 

From Eq.(109) it is obvious that more resonant frequencies have added up to the longitudinal/axial 

ones. These extra resonant frequencies are shown in the image below: 
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Fig. 32 Longitudinal (axial) and the transverse modes in a cavity as a function of frequency. 

 

2.3.4 Degenerate Modes 
 

Examining Eq.(110), it is possible to eliminate the Gouy term 
(1+𝑛+𝑚)

𝜋
𝑎𝑐𝑜𝑠(√𝑔1𝑔2) when 

√𝑔1𝑔2 = 1 . This can occur for certain geometries like, for example, the concentric cavity, where 

𝑅1 = 𝑅2 = 𝑅 and 𝐿 = 2𝑅 or the two plane mirrors cavity, where 𝑅1 = 𝑅2 → ∞ .  

 

These cavities are referred to as degenerate because the resonant frequency 𝑣𝑞𝑛𝑚  depends only on 

the longitudinal mode index q and if the same for all transverse modes n and m. Schematically, 

this means that in Fig.(32) all the higher order modes have collapsed to the axial mode. 
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Chapter 3 - Imaging System Design 
 

In this chapter, we are going to present the optical system designed for the imaging part of our 

experiment. Optical design is the process of designing an optical system in order to comply with 

the required specifications like, for example, performance goals.  

 

We will start by discussing about some important parameters, which characterize the performance 

of an imaging system and optical aberrations. Next, we will introduce an existing imaging system 

and then we are going to combine it with the cavity and evaluate its performance. 

 

3.1 Performance Parameters and Optical Aberrations 
 

Some important quantitative parameters that characterize the performance of an imaging system 

are the numerical aperture NA and the optical resolution. 

 

3.1.1 Numerical Aperture 
 

Numerical aperture NA was defined in section 1.2 and is given by Eq.(9) 𝑁𝐴 = 𝑛 𝑠𝑖𝑛𝜃. This 

quantity is restricted by the size of the first optical element (e.g. lens) after the light source, as rays 

are limited by the size of the lens (this can be seen in the following image). In that sense, numerical 

aperture has a maximum value when 𝜃 = 𝜃𝑚𝑎𝑥 . 

 

 

Fig. 33 Light rays limited by the size of a lens. 

 



59 
 

3.1.2 Optical Resolution 
 

Optical resolution R, is defined as the minimum distance that an imaging system can separate 

between two point sources on the object [12]. It is affected by the numerical aperture NA, the 

wavelength λ of the source used and is given by, 

 

 𝑅 =
0.612𝜆

𝑁𝐴
 (111) 

 

Optical resolution R is straightforwardly connected to the angular resolution of an imaging system 

which is the smallest angle between two different point sources that can be distinguished.  

 

In microscopy, there is a limit of optical resolution R which is restricted by the wave nature of 

light due to diffraction. When light of a point source passes through a small circular aperture, 

diffraction of light occurs and a diffraction pattern is produced known as Airy pattern and the 

central brighter disc known as Airy disk. This pattern can be seen in the following image. 

 

 

Fig. 34 Airy pattern due to diffraction from circular aperture. (taken from [13] ) 

 

Airy disk defines the limit of resolution R that can be achieved by an imaging system, which is the 

smallest radius of the spot in image plane where an optical system can focus a light beam.  
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Rayleigh Criterion states that two objects will be resolved when they have at least distance R 

between them. In other words, this Criterion describes the ability of an imaging system to separate 

between two Airy discs coming from two different point sources in the diffraction pattern. In this 

case, the imaging system is said to be diffraction limited. This can be seen in the following image. 

 

 

Fig. 35 Airy discs coming from two different point sources of distance between them (a) greater 

than R, (b) equal to R (Rayleigh Criterion), (c) less than R. In (a) and (b) the two different point 

sources can be distinguished while in (c) they can’t. (taken from [14] ) 

 

3.1.3 Optical Aberrations 
 

Optical aberrations refer to any deviation of the performance of an optical system from the ideal 

paraxial approximation predictions [15]. They are caused due to the geometry or the imperfections 

of the optical elements (e.g. lenses) used, or due to the fact that different wavelengths follow 

different paths when propagating in matter. Aberrations cause deformations to the ideal paraxial 

shape of the waveform that exits an optical system. As a result, the image formed in the exit of an 

optical system is either blurred or distorted depending on the type of the existing aberration [7]. In 

order to deal with aberrations when designing an imaging system, lenses with opposite sign 

aberrations (e.g. converging and diverging lenses) are combined together, trying to eliminate 

aberrations through the whole optical system as much as possible.  

 

Aberrations are divided in two types, the monochromatic and chromatic aberrations [16]. 

Monochromatic aberrations are spherical aberrations, coma, astigmatism, field curvature, image 

distortion and defocus, while chromatic are divided in longitudinal and transverse aberrations. 
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For the purpose of this thesis, in what is to follow, only some monochromatic aberrations will be 

discussed. 

 

Spherical aberrations 

An ideal/thin lens, focuses all light rays passing along the lens in one point, as one can see in the 

following picture. 

 

 

Fig. 36 Perfect lens focuses all light rays in one point. (taken from [17]) 

 

But, of course, ideal lenses do not exist. Due to the geometry (curvature) and the thickness of the 

lens shown in Fig.(36), light rays coming from the edges of the lens (marginal rays) propagate in 

a shorter distance inside the lens and therefore they are refracted earlier than the rays near the 

optical axis (paraxial rays). As a result, lenses are unable to focus all light rays in the same point, 

as it is depicted in the following image. 

 

 

Fig. 37 In a non-ideal lens, light rays do not focus at the same point in the exit. (taken from [17]) 
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When the focal length of marginal rays of a lens is shorter than the focal length of its paraxial rays, 

the lens is characterized by positive spherical aberration, like the converging lens in Fig.(37). The 

opposite means that the lens is characterized by a negative spherical aberration (e.g. diverging 

lens). Consequently, spherical aberrations can be reduced by combining lenses of opposite 

spherical aberration. 

 

Coma aberration 

Coma aberration appears when the object we want to image is not located on the optical axis. It is 

defined as a variation in transverse magnification between marginal and paraxial rays and as a 

result, the image appears to have a tail (like a comet) known as coma tail. To deal with this 

aberration, one can tilt the lens or the whole optical system in order to locate the object on the 

optical axis [18].  

 

 

Fig. 38 Coma aberration and the coma tail formed in the image plane. (taken from [19]) 

 

3.2 Optical Simulation Software 
 

Nowadays, there are several optical simulation softwares that are used widely to design and 

analyze imaging systems. Zemax-OpticStudio [20] is a well-known raytracing optical software 

which we used for the purposes of this Master thesis. This software helped us to design our imaging 

system, evaluate its performance and tried to improve the performance further.  

 

Getting started with Zemax, we need to define the actual optical materials comprising our optical 

system, in Zemax’s interface. For example, this means that we need to define radii of curvature of 
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the two surfaces of a lens, its thickness and diameter and the type of the material (glass type) that 

it is made up from. Moreover, Zemax comes with built-in libraries that contain data for various 

lenses from many optics design companies and can use them straightforward instead of designing 

lenses from scratch.  

 

As an example of designing an optical system using Zemax we perform the following steps. After 

creating the optical system we want, we choose type of source (e.g. point source of some NA), we 

choose the wavelength of the light rays and Zemax creates a layout showing how rays propagate 

in the optical system (Fig. 39) and a spot diagram calculating the spread of the rays at the end of 

the optical system scaled to the Airy disk (black circle) diameter (Fig. 40). 

 

 

Fig. 39 Layout example in Zemax optical design software. Light rays (in blue) propagate 

through a lens. 
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Fig. 40 Spot diagram example in Zemax optical design software. Spot of the rays at the end of 

the optical system shown in Fig. 39 and the corresponding Airy disk (black circle). 

 

The spread of the rays shown in Fig. 40 of our example, is caused by spherical aberrations 

described in the previous section. 

 

Zemax also gives the ability to move the light source off the optical axis or even to rotate either 

parts of the optical system or the whole optical system with respect to some axis. Furthermore, it 

can automatically optimize an optical’s system performance, using the merit function which is 

defined as a least square function. At first, we need to define the optimization parameters. Such 

parameters can be the radius of curvature of an optical element or the distance between two optical 

elements. Next, the optimization target needs to be defined. For instance, we want to minimize the 

spot size of the light rays coming out from our imaging system (minimize with respect to RMS 

radius depicted in Fig. 40). Finally, we let Zemax run the optimization and it stops when the merit 

function reaches as close to zero as possible, giving us the optimized values for each of the 

parameters defined.  

 

3.3 Designing the Imaging System  
 

For the purpose of this master thesis, we want to combine the cavity with two optical systems, one 

before the cavity and one after the cavity. In this way, the optical system before the cavity will 

drive light inside the cavity to interact with our specimen and the latter optical system will collect 

light coming out of the cavity in order to create our image, as we can see in the following figure. 
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Fig. 41 Optical system before the cavity will drive light inside the cavity to interact with our 

specimen and the latter optical system will collect light coming out of the cavity in order to 

create our image.  

 

At this point, we are going to present an existing imaging system, that was used in the past in our 

laboratory. Back in 2011 Dr. Melina Pappa, published her PhD research [21], which took place in 

Cretan Matter Waves (BEC) laboratory and for the purpose of her research, she constructed a 4 f 

imaging system. 

 

The imaging system is comprised of two identical lensets and each lenset is composed of an 

achromatic doublet (Melles-Griot, LAO-160.0-31.5-780) and a meniscus lens (Melles-Griot, 

MENP-31.5-6.0-233.6-780). Between the two lenses there is a 1mm distance. 

 

Using Zemax, we optimized the distances for the lensets using a merit function, in order to get a 

minimized RMS radius (for NA=0.12 and a wavelength of 780nm). A layout is shown in the 

following image for a source on the optical axis of the system. 
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Fig. 42 A layout of the existing imaging system with distances optimized with respect to the RMS 

radius of the spot in the image plane. The system is symmetric. 

 

And the corresponding spot diagram is the following.  
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Fig. 43 Spot diagram of the optimized existing imaging system. 

 

As we can see the resolution corresponds to an Airy disk of 7.93μm diameter and the RMS radius 

is 3.4μm. This means that the imaging system is very close to the diffraction limit, as Dr. Pappa 

states in her thesis.  

 

Due to its good performance and the fact that this imaging system is available in the BEC lab, we 

are going to combine it with the cavity. So, as we can see in the following figure, we will use the 

existing imaging system before and after the cavity, to serve as the optical systems in Fig.41. 

 

 

Fig. 44 Cavity combined with the existing imaging system. 
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Next step is to check the performance of this whole system in Zemax. But as we can see in Fig.44, 

the system is symmetric and we only need to check the performance for half the system, as we do 

in the following sections. 

 

3.4 Cavity Combined with the Existing Imaging System 
 

At this stage of the thesis, we are ready to combine an optical cavity with the imaging system 

described previously and check for its performance. 

 

3.4.1 Confocal Cavity composed of Plano-Concave Mirrors 
 

3.4.1.1 Source on the optical axis 

 

At first, we want to check the performance of a confocal cavity comprised of two plano-concave 

mirrors (Laseroptik - S-00071) which have radius of curvature 𝑅 = −100𝑚𝑚 . This means that 

each mirror must have a distance of 50mm from the center of the cavity where we will place the 

specimen we want to image, as we can see in the next figure. 

 

 

Fig. 45 Layout of the confocal cavity combined with the imaging system. 
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From now on, all optimizations are performed for NA=0.12 and λ=780nm. 

 

We will now optimize the distance between the plano-concave mirror and the first element of the 

imaging system using merit function, in order to minimize the spot of the image at the end of the 

system. The optimal distance we find is 43.94mm, as it is depicted bellow. The rest of the distances 

not shown are the same as in Fig.42. 

 

 

Fig. 46 Optimized distance between the cavity and the imaging system. 

 

And the corresponding spot diagram for the optimized optical system is the following, 
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Fig. 47 Spot diagram for the optimized optical system. 

 

All the rays fall inside the Airy disk which means that our optical system is diffraction limited and 

the resolution corresponds to an Airy disk diameter of 6.458μm. 

 

Because we can’t be sure that the specimen we want to image will be on the optical axis, we will 

also check for a source being off axis and see how the system deviates.   

 

3.4.1.2 Source off axis by 1mm 

 

Moving the source by y=1mm off axis, we see that not all rays from the source can pass through 

the optical system, 
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Fig. 48 Layout for source at 1mm off axis. 

 

And the corresponding spot diagram we get is, 

 

 

Fig. 49 Spot diagram for source at 1mm off axis. 
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Which shows that the rays start to spread, extending beyond the Airy disk, and it seems to have 

introduced coma aberration, because we are off axis. To confirm that this is mainly due to coma 

aberration we tilt the imaging system, expecting in this case to fix the problem. So, we tilt the 

imaging system by angle θ equal to 𝜃 = atan(𝑦/𝑧) , where y is the height of the source from the 

optical axis (here 1mm off axis) and z is the distance pointed out in Fig.48. The tilting will be 

performed around x axis such that all rays pass again from the imaging system. In the following 

image all the axes are depicted and the part that was tilted is marked. 

 

 

Fig. 50 Layout for tilted imaging system. 

 

And the corresponding spot diagram we get is, 
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Fig. 51 Spot diagram for the tilted imaging system. 

 

Which seems to still suffer from some kind of aberration but the spot has improved on shape 

compared to that of Fig.49 and the RMS changes only slightly, when we perform tilting. Moreover, 

the spot is no more diffraction limited. 

 

3.4.1.3 Source off axis by 2mm 

 

Moving the source by y=2mm off axis, we see that not all rays from the source can pass through 

the optical system, 
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Fig. 52 Layout for source at 2mm off axis. 

 

And the corresponding spot diagram we get is, 

 

 

Fig. 53 Spot diagram for source at 2mm off axis. 
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Which shows that rays spread out again, this time more than those in Fig.47 and it seems to have 

introduced coma aberration, because we are off axis. Again, the presence of coma aberration is 

confirmed since by tilting the imaging system, the problem is practically fixed. So, we have to tilt 

the imaging system by angle θ equal to 𝜃 = atan(𝑦/𝑧) , where y is the height of the source from 

the optical axis (here 2mm off axis) and z is the distance pointed out in Fig.52. The tilting will be 

performed around x axis such that all rays pass again from the imaging system. In the following 

image all the axes are depicted and the part that was tilted is marked. 

 

 

Fig. 54 Layout for tilted imaging system. 

 

And the corresponding spot diagram we get is, 
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Fig. 55 Spot diagram for tilted imaging system. 

 

Which seems to still suffer from some kind of aberration but the spot has improved on shape 

compared to that of Fig.53 and the RMS changes only slightly, when we perform tilting. Moreover, 

the spot is no more diffraction limited. 

 

3.4.1.4 Source off axis by 3mm 

 

Moving the source by y=3mm off axis, it is now clearer that not all rays from the source can pass 

through the optical system, 
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Fig. 56 Layout for source at 3mm off axis. 

 

And the corresponding spot diagram we get is, 

 

 

Fig. 57 Spot diagram for source at 3mm off axis. 
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Which shows us that the rays spread way too much around the Airy disk and it seems to have 

introduced coma aberration, because we are off axis. Again, the presence of coma aberration is 

confirmed since by tilting the imaging system, the problem is practically fixed.  So, we have to tilt 

the imaging system by angle θ equal to 𝜃 = atan(𝑦/𝑧) , where y is the height of the source from 

the optical axis (here 3mm off axis) and z is the distance pointed out in Fig.56. The tilting will be 

performed around x axis such that all rays pass again from the imaging system. In the following 

image all the axes are depicted and the part that was tilted is marked. 

 

 

Fig. 58 Layout for tilted imaging system. 

 

And the corresponding spot diagram we get is, 
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Fig. 59 Spot diagram for tilted imaging system. 

 

Which seems to still suffer from some kind of aberration but the spot has improved on shape 

compared to that of Fig.57 and the RMS changes only slightly, when we perform tilting. Moreover, 

the spot is no more diffraction limited. 

 

3.4.1.5 Annotation 

 

As we have seen that using confocal cavity composed of two plano-concave mirrors accompanied 

with the imaging system presented in section 3.3, we manage to get a diffraction limited system, 

when the source is located on the optical axis. If the source starts moving away from the optical 

axis, some kind of aberrations start to appear (probably coma aberration), deforming the shape of 

the spot the rays create at the exit and spreading them out of the Airy disk. Tilting the imaging 

system, seems to improve the shape of the spot but the RMS radius of the rays does not show any 

improvement. The greater the distance of the source from the optical axis, the bigger the deviations 

appear to be. Last but not least, we would like to point out that the Airy disk diameter stays almost 

the same no matter the height of the source nor the tilting of the optical system. 
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3.4.2 Confocal Cavity composed of Zero-Lens Mirrors 
 

Zero-lens mirrors are widely used to form optical cavities, because they do not produce much 

spherical aberrations. The two spherical surfaces of the zero-lens mirrors are of the same radius of 

curvature. In this section, we are going to use this kind of mirrors to check the performance of the 

cavity combined with the existing imaging system. 

 

3.4.2.1 Source on the optical axis 

 

In this section we will check the performance of a confocal cavity comprised of two identical zero-

lens mirrors (Laseroptik - S-01090) which have radii of curvature 𝑅1 = −𝑅2 = −100𝑚𝑚 . This 

means that each mirror must have a distance of 50mm from the center of the cavity where we will 

place the specimen we want to image, as we can see in the next figure. 

 

 

Fig. 60 Layout of the confocal cavity combined with the imaging system. 

 

From now on, all optimizations are performed for NA=0.12 and λ=780nm. 

 

We will now optimize the distance between the zero lens and the first element of the imaging 

system using merit function, in order to minimize the spot of the image at the end of the system. 
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The optimal distance we find is 30.22mm, as it is depicted bellow. The rest of the distances not 

shown are the same as in Fig.42. 

 

 

Fig. 61 Optimized distance between the cavity and the imaging system. 

 

And the corresponding spot diagram for the optimized optical system is the following, 
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Fig. 62 Spot diagram for the optimized optical system. 

 

As we can see, not all the rays fall inside the Airy disk which means that our optical system is not 

diffraction limited. Spherical aberrations that zero lens introduces are stronger than those of the 

plano-concave lens introduced in Fig. 47. Also, the resolution corresponds to an Airy disk diameter 

of 8.127μm while for the plano-concave arrangement was 6.458μm in Fig.47, meaning that optical 

system of Fig.61 has a worse resolution than the one in Fig.46. 

 

In order to improve the spot size of Fig.62 we tried adding flat glass windows at the end of the 

imaging system, as one can see in the following image. 
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Fig. 63 Layout of the imaging system with an extra flat glass window added at the end. 

 

And by introducing different thicknesses to the glass window, we observed how the spot size of 

Fig.62 was affected. What we found, was that for increasing thickness, the spot size was getting 

smaller until it reached to the diffraction limited case at some point.  

 

Below, we have constructed a table showing the diameter D of the Airy disk and the RMS radius 

for different thicknesses T. 
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Table 3 By changing thickness T of the flat glass window in Fig.63 we see that RMS radius of the 

spot in Fig.62 decreases while Airy disk diameter D, stays the same. 

 

We also plotted RMS radius as a function of thickness T using the data of Table 3. 

 

 

Fig. 64 RMS radius as a function of thickness T of the flat glass window. 

 

What we found is RMS radius has a linear dependence with the thickness T of the flat glass 

window. 

 



85 
 

We will now show some spot diagrams for different glass window thicknesses. 

 

 

Fig. 65 Spot diagram for 5mm flat glass window thickness. 

 

 

Fig. 66 Spot diagram for 10mm flat glass window thickness. 



86 
 

 

 

 

Fig. 67 Spot diagram for 15mm flat glass window thickness. 

 

 

Fig. 68 Spot diagram for 20mm flat glass window thickness. 
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As we can see, for increasing window thickness, our system tends to the diffraction limit and for 

a window of 20mm thickness, we are already in the diffraction limited case. 

 

3.4.2.2 Source off axis  

 

As we saw in the previous section, by adding a flat glass window the system tends to the diffraction 

limit. We now want to see, how the system behaves with the flat glass at the end when the source 

is not located on the optical axis. 

 

For glass window thickness of 3mm the on axis spot diagram is, 

 

 

Fig. 69 Spot diagram for 3mm flat glass window thickness and source on the optical axis. 

 

Moving the source by 1, 2 and 3mm off axis the spots we get, appear in the following figures. 
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Fig. 70 Spot diagram for 3mm flat glass window thickness and source 1mm off axis. 

 

 

Fig. 71 Spot diagram for 3mm flat glass window thickness and source 2mm off axis. 
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Fig. 72 Spot diagram for 3mm flat glass window thickness and source 3mm off axis. 

 

It is obvious that more aberrations are introduced, but they do not seem to be the same as those in 

sections 3.4.1.(2-4). The rays seem to deviate in a same way both to the top and to the bottom. 

These do not seem to be coma aberrations so no tilting was performed here. The higher the distance 

of the source from the optical axis, the greater rays spread out of the Airy disk. 
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Chapter 4 – Experimental Study 
 

As we described in Chapter 2, cavities are characterized by specific resonant axial modes. In this 

chapter we are going to check these resonant axial modes experimentally by presenting results of 

experimental studies performed in the BEC lab. 

 

4.1 Cavity Modes 
 

The purpose of this experimental exercise is to construct an optical cavity and by aligning a laser 

beam through the cavity to achieve resonance. 

 

The experimental arrangement can be seen in the following image, followed by a brief explanation. 

 

 

Fig. 73 Experimental arrangement. 
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Laser beam (wavelength of roughly 780nm) enters the optical system through an optical fiber 

(PM780-HP - 770-1100 nm Polarization-Maintaining Fiber, 5.3 µm Mode Field Diameter) which 

is attached to a fiber collimator (60FC-4-A8-07 - Focal lengths up to 20 mm). This system is 

mounted in order to be able to steer the laser beam. What follows, is a mounted flat mirror (BB1-

E03P - Ø1" Back Side Polished, Broadband Dielectric Mirror, 750 - 1100 nm) to reflect the beam 

at a 90 degrees angle. Then, laser beam enters the cavity which is comprised of a tube with mirror 

holders at the edges, roughly at 10cm distance between them. The attached mirrors are plano-

concave with focal length of 50mm (CM127-050-E03 - Ø1/2" Dielectric-Coated Concave Mirror, 

750 - 1100 nm, f = 50 mm). In the front end of the cavity, there is also attached an iris so that 

illumination is controlled, while in the back end of the cavity a piezoelectric (PZT) device is being 

attached in order to be able and control the length of the cavity. In the end, when light comes out 

of the cavity, it passes through a lens with focal length of 75mm, focusing the light in an amplified 

photodetector. Both photodetector and the piezoelectric device were attached to an oscilloscope. 

 

When a proper alignment was achieved, the piezoelectric device was used (triangular pulse - 

frequency of 149.32 Hz) to make small changes to the length of the cavity and some resonance 

was found. A photo from the oscilloscope follows, showing the resonant peaks (yellow lines) and 

the triangular pulse (blue) infused in the piezoelectric device. 
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Fig. 74 Photo from oscilloscope showing resonant peaks (yellow) and triangular pulse infused to 

the oscilloscope (blue). Horizontal axis measures time while vertical voltage. 

 

The piezoelectric device causes the mirror of the cavity to oscillate back and forth, changing the 

cavity length. In between the red lines that we have drawn in Fig.74, we can see the resonances of 

the cavity for one whole swipe for the mirror. 

 

From Eq.(87) we know that the distance between two consecutive resonant peaks should be equal 

to λ/2. The wavelength used was 780nm, so the distance between two peaks in Fig.74 is equal to 

𝑑1=390 nm or 𝑑1=0.39 μm.  

 

From piezoelectric’s device manual, we found that for every 1Volt, piezoelectric device displaces 

the mirror by 1μm. The peak to peak voltage of the blue pulse (from one red line to the other) in 

Fig.74 is 16.8 V, meaning that for that period of time, the mirror was displaced by 𝑑2=1.68 μm.  
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Now, by dividing 𝑑2 with 𝑑1 we will find how many distances between two consecutive resonant 

peaks 𝑑1 , should exist between the red lines in Fig.74.  

 

Division gives 4.3 , rounded to the nearest integer we get 4. This means that we should see 4 whole 

distances 𝑑1 , or else we should be able to see 5 resonant peaks.  

 

Of course, as one can see, between the two red lines in Fig.74, we can see 5 resonant peaks in 

agreement with the analysis performed. 
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Conclusions 
 

In this thesis, we have theoretically studied the operation of cavities and based on our analysis we 

have designed optical systems that involve the use of cavities, optimized to be used for imaging 

applications. 

 

We performed numerical simulations to understand and visualize how light rays propagate inside 

optical cavities taking into account the stability of the cavity. 

 

Based on the above we designed optical systems with integrated optical cavities. Our analysis 

shows that these systems seem to be well-behaved as far as the on axis optical aberrations are 

concerned. The first system we optimized, which contains a cavity comprised of plano-concave 

mirrors combined with the imaging system we introduced, behaves very close to the diffraction 

limit with minor spherical aberrations. On the other hand, the second one, composed of a cavity 

with zero-lens mirrors combined with the imaging system, is characterized by spherical aberrations 

which we eliminated by adding flat glass surfaces of different thicknesses at the back end of the 

whole system. In the off-axis cases we clearly see that coma aberration appears for the first system 

we checked. In the second system we see a more complex mixture of aberrations distorting the 

spot symmetrically to the top and to the bottom. The more distant the source from the optical axis, 

the greater these optical aberrations. 

 

Moreover, we studied cavities experimentally and we observed the resonances inside a tube cavity 

with the help of a piezoelectric device. The theoretical analysis we performed agrees with the 

experimental observations, as we concluded in the fourth chapter. 

 

Considering the work on this master thesis, the future of imaging using optical cavities is a 

promising technique. 
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