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Abstract

Much of the knowledge that we have from our world stems from images. Using optics and cameras,
we can map how much light a sample absorbs or refracts and from that deduce the composition or
physical structure of the sample. On the other hand, a limiting factor in optical microscopy is the
sensitivity to minute refractive index changes. For example, when imaging biological cells,
labeling has to be used since the minute changes in the real and imaginary part of the refractive
index, induced by the cell’s inner workings, are practically invisible. Label-free imaging of the
constituents of a living cell is still an open challenge

In this master thesis we explored novel techniques that involve the use of optical cavities towards
a goal to enhance the resolution of optical microscopy. Our study was focused on using theoretical
tools and numerical simulations to analyze the behavior of optical cavities when used in
combination with imaging systems. Based on our analysis we have designed such complex optical
systems, optimized to be used for imaging applications.



Iepiinyn

[ToAAEG amd TG YVOGELG TOL £YOVLLE Y10 TOV KOGUO LOG, TNYALoVV amd EIKOVEC. XPTOUOTOUDVTOG
OTTIKA OTOYELD KOl KAPEPES, UTOPOVLLE VO YOPTOYPAPNGOVUE TOGO PG OTOPPOPAETOL 1 SLaOAG T
amd éva oelypa Kot amd avtd Vo, GUUTEPAVOLLLE TNV GVGTACT 1| TNV PULGIKT OOUN TOV dElYHOTOC.
AQeTépov, £vag TEPLOPIOTIKOC TOPAYOVTOS GTIV OTTIKY| LIKPOoKOTia eivat 1) evoncOnoio og pikpég
aAAayég Tov dgiktn odOiaong. o mapdoetypa, 6tov anetkovifovpe PloAoyikd KOTTAPQ, TPETEL
va yiveTon ypnon ETIKET®V, KaODG 01 TOPAUIKPES AAAAYEG GTO TPOYUOTIKO KOL TO (OVTOGTIKO
HUEPOC TOL OeiKTn d1AOAOGNC, TO 0010 OPEILETAL OTIS ECMTEPIKES OEPYUTIES TOV KVTTAPOV, Elval
TPOKTIKE aopates. H pn yprion etiketdv oty ontikn aneikdvion evog (ovtavod Kuttdpov, givat
axopa pio avolkTn TpoOKANoN.

O oKomdG TG TapoVGOG LETATTUYIOKNG epyaciog stvar vo eEEPELVIIGOVIE KOVOTOUES TEXVIKEG,
Bacilopeveg o€ ¥pNoN OTTIKOV KOILOTATOV, LE OKOTTO TNV PBeATimon TG S10KPITIKNAG KOVOTNTOG
otV ontikn pikpookomio. H pedétn pog eotidotnke oty ypnon eopntikdv epyoieiov Ko
aplOUNTIKOV TPOCOUOLDCEDY MOTE VO, AVOAVGOVUE TNV GLUTEPLUPOPA TOV OMTIKOV KOIAOTNTWOV
otav avtég GLVOLALOVTOL LE GLGTNUATO OTTIKNG AMEIKOVIONG. ZOUPOVE LE TNV OVAALGT LLOG,
gyovpe oyedldoet cLVOETA ONTIKE GLOTHUATO, PEATICTOTOMUEVA DGTE VO, XPNOLLOTOM OOV Yo
EQOPLOYES ATEIKOVIOTG.
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Introduction

Humans, curious beings, have always been trying to explain physical phenomena by making
observations. This led to the development of physical sciences where we -people- try to explore
and understand our world in both a macroscopic and microscopic level. Human eye, is an
embedded imaging system that helps us image the world around. But eyes have a limit on the range
they function. For this reason, scientists have developed techniques that allow to image objects in
both macroscopic and microscopic scale.

Optical microscopy is an imaging technique where light interacts with some specimen (for
example a biological cell) and by collecting the light after the interaction, an image of the specimen
can be formed. The simplest and most well-known microscopy imaging technique is the bright
field microscopy [1] where we illuminate a sample with white light from below and we observe it
from above, like in light microscopes. The sample appears dark in a bright background. Another
one, is the dark field microscopy [2] which forms images in an opposite way to the brightfield
microscopy. The specimen is illuminated with white light but only scattered light is collected in
the end, forming a bright image of the sample in a dark background. Finally, one frequently used
technique is the fluorescent microscopy [3] where the sample gets excited with a particular
wavelength and then sample reemits in a different wavelength which we collect to form the image.

As stated in the abstract, we want to explore a new optical imaging technique that involves optical
cavities. As a result, the first two chapters are devoted to the theoretical background needed for
optical cavities, while the third chapter contains theoretical simulations on the imaging system we
designed. Finally, in the last chapter, we present some first experimental results on the operation
an optical cavity experimentally.



Chapter 1 — Light Propagation in Optical Systems

1.1 Geometrical Optics and Paraxial Approximation

Geometrical optics, is a field of optics, where under the condition that the wavelength 1 — 0, the
propagation of an electromagnetic light wave can be described with geometric light rays. These
rays are related to the flow of energy in the electromagnetic field. They are straight lines in the
case of homogeneous medium while they are curved in the case of inhomogeneous medium.

Paraxial approximation, takes into account that the rays form a small angle to the optical axis of
the system or else that the propagation direction of the light deviates only slightly from some
optical axis. This approximation allows great simplifications in calculations for some optical
system. It is used both in ray tracing and in Gaussian optics, as light passes through a simple optical
system (e.g. refractive plane) or a complex one (e.g. combined optical elements like lenses and
mirrors).

By defining the angle of the ray to the optical axis with the letter g and considering paraxial
approximation, the following Taylor expansion simplifications emerge:

cosp=1 , sinf=f , tanf=p (1)

with 8 measured in radians.

1.1.1 Ray Matrix Representation in Paraxial Approximation

Ray transfer matrix analysis is a mathematical method that uses matrices to describe ray
propagation through an optical system, under the paraxial approximation. It connects the height
and inclination of the ray in the input plane to those in the output plane, as the ray progresses
through an optical system. Height is defined on a transverse plane to the optical axis and inclination
is measured from the optical axis to the ray.



height y

Optical axis z

plane i-1 plane i

Fig. 1 Representation of a ray propagation on the y-z plane

Both are described as a column vector, namely ray vector. Therefore, the form of the ray vector
will be:
i
2
[ni *Bi 2)

where, y; is the height of the ray, §; the inclination (angle) of the ray measured from optical axis
z in radians and n; is the index of refraction of the medium

As ray propagates through an optical system, the ray vectors of the initial transverse plane to the
final transverse plane are connected through a 2 x 2 transformation matrix which describes the
optical system between these transverse planes.

) =18 B[ 25, @)

This transformation matrix is often referred to as ABCD matrix and the whole approach as ABCD
matrix theory which will be analyzed later.



1.2 Validity Limits of the Paraxial Approximation

In natural sciences, the approximations of Eq.(1) are widely used to simplify calculations in
many problems. However, those terms are only the first non-zero terms in Taylor expansion
approximation. This means, that they give good accuracy for small angles while more terms of
the expansion are needed to improve accuracy for bigger angles. As a result, it is necessary to
study the range of angles that the approximation of Eq.(1) works adequately.

Fig. 2 Ray d inclined by angle 6 to the optical axis, incident to a spherical surface.

In the image above, one can see that for increasing inclination 0, the approximation produces

increasing errors (dashed line). [4]

Applying Pythagoras’s theorem,

s v () @

Butd = s for every% < 1.1, and as a result,

10



h
S <0.458 = 0 < 24.6° (5)

Assuming m is an error term (obviously m < 1),

d
—<1+m (6)
s

it can be concluded that,

h
;S\/2m+m2 (7)

However, for m « 1 (e.g. 0.1) the term 2m is much larger than m? and therefore,

SS V2m (8)

In Fig. 2, numerical aperture NA is defined as the following product:

NA = n sinf (9)

Where n is the refractive index of the medium in object space and 6 is the maximum half-angle of
the cone of rays that the optical system collects from the object.

However, in paraxial approximation sinf ~ tan6 and Eq.(9) turns to NA = n tanf. As a result,
for n = 1 in object space,

NA = h/s (10)

In the following table, one can see what is the maximum error for different values of the
inclination.

11



0 m NA
2.5° 0.09% 0.04

8° 0.99% 0.14
17° 4.67% 0.29
24° 9.91% 0.41

30° 16.67% 0.50
35° 24.51% 0.57
40° 35.20% 0.64
45° 50% 0.71

Table 1 Error term m for different angles 8 and Numerical Aperture NA.

From the table above, it is obvious that the approximation performs poorly as the angle increases
and the rate of change for the error is not stable but also increases with increasing angle. As far as
the error stays under 16.67% for angles less than 30° it is safe to say that for that range of angles,
paraxial approximation gives a decent accuracy.

1.3 ABCD Matrix Theory

ABCD matrix theory connects the input parameters[5] (height and inclination) of a ray in the
paraxial approximation, to the output parameters of the same ray as it travels through an optical
system:

[ni}fiﬁi] - é g '[ni_};i-_z’i_l] (11)
or
[nijfiﬁi] =M [ni_}:i._ EH] (12)

The above ABCD matrix M describes the optical system and traces the light’s path. When light
propagates through an optical system, three basic transformations can occur with optical surfaces.
Light can just displace itself through a surface and can be refracted or reflected by system’s optical
surfaces.

12



For some complex optical system in which all the above transformations can occur, one can find
the total matrix that describes this system, simply by multiplying the individual basic interaction
matrices (the next one times the previous one):

s

ny - Pq (13)

[ni)fiﬁi] =M;-M;_y- ... -My- [

Subsequently, the three basic transformation matrices will be derived assuming that paraxial
approximation applies.

For the following derivations, will be consider the following definition: refractive index n of the
medium, will be positive when ray displaces to the positive of the optical axis and negative when
displaces to the negative of the optical axis.

1.3.1 Optical Displacement Transformation Matrix

Via |-~ Bi-1

[€ Az 3 Optica;I axis z
plane Zi1 plane Zi

Fig. 3 Optical displacement.

Taking into account Eq.(1), the following can be derived:

13



Yi=Yi-1+4z- B4
(14)
ﬁi = ﬁi—l

where dz is the algebraic value of the displacement of the ray on z axis.

Assuming that during the displacement there is no change in the index of refraction n; of the

medium, one can get:

Az
Vi ® Vi1t Pl "Bi-a
' (15)
B = NP1
The above equations can be written in matrix representation as follows:
y 129 0y
i —|. i-1
[ni 'ﬁi] B [ ni] [ni 'ﬁi—1] (16)
0 1
which concludes that the matrix for the displacement of a ray is defined as:
Az
mely 2[5
0 1

The same result occurs when the ray is displaced to the -z of the optical axis because then 4z < 0

and n < 0 (by definition).

14



1.3.2 Optical Refraction Transformation Matrix

Pr,

Optical axis z

Fig. 4 Optical refraction from spherical surface of radius R;.

The height of the ray on the spherical interface remains the same, meaning y; = y;_;.

Taking into account Eq.(1) , the following can be derived:

@ = Y;i/R; (18)

while from Fig. 4 the next two relations can be acquired:

Op=Bi+epand ;=P 1+¢ (19)

From Eq.(1) and Snell’s Law, one can get:

nl-_19i_1 = Tliei (20)

Combining all the above equations, the result written in matrix representation is the following:

15




1
[ni}fiﬁi] = (my—ni_1) Yi-1 ] (21)

TR 1| i1 Bica

which concludes that the matrix describing the refraction of light, in paraxial approximation, from
spherical surfaces is defined as:

M—[l 0]— (niini—ﬂ °
“l=p 11~ _—R- 1 (22)

where P = (n; —n;_1)/R; is defined as the optical power of the refractive surface and R; can be
either negative or positive for concave or convex refractive surface respectively.

1.3.3 Optical Reflection Transformation Matrix

_zﬁg*__

Optical axis z

Fig. 5 Optical reflection from spherical surface of radius R;.

16



The height of the ray slightly before and slightly after the reflection, remains the same, meaning
Vi = Vi-1-

Taking into account Eq.(1) , the following can be derived:

@ = yi/R; (23)

while from Fig. 5 the next two relations can be acquired:

Bi-1=0i1—¢ and B;=6;+¢ (24)

and by subtracting the two equations of Eq.(24), considering that 8,_; = 6;, one gets:

Bi=2¢ + Pi—1 (25)

and while ray remains in the same medium due to reflection, there is no change in the refractive
index, n; = n;_;. EQ.(25) can be written as:

Bin; = 2¢on; + Bi_1n; (26)

Combining all the above, the result written in matrix representation is the following:
y 10 y
i — 2N . i-1 27
[ni 'ﬁi] [R—l 1] n; 'ﬁi—1] 27)
l

indicating that the matrix describing the reflection of light, in paraxial approximation, from
spherical surfaces is defined as:

M:[l 0]_2}% 0 (28)
-P 1 R, 1

17



where P = —2n; /R, again, is defined as the optical power of the reflecting surface and R; can be
either negative or positive for concave or convex refractive surface respectively.

One can conclude to the same result by using refraction transformation matrix of Eq.(22).
Considering negative and positive refractive indices, as defined earlier, and that the ray stays at
the same medium (meaning that refractive index does not change):

1 0 1 0 1 0
M=|_ (n; —ni—1) 117 |- (=n; —ny) 1= 2n; 1 (29)
R; R; R;

When the ray is moving to the negative of the optical axis and gets reflected, the reflection matrix
is not the same as Eq.(28). Using again refraction transformation matrix of Eq.(22) and considering
negative and positive refractive indices, as defined earlier, and that the ray stays at the same
medium:

M =

1 0
_ 1‘ (30)
R;

1 0 1 0
(n; —n;—q) 1‘ = [_ n; — (—ny) 1] =
R; R;

Where now P = 2n;/R; is the optical power.

1.3.4 Sign conversions in Bibliography

Unfortunately, the sign of a radius of curvature of a convex and a concave spherical surface is not
defined in a coherent way in the bibliography [5] [6] [7] [8] . This causes a lot of confusion
especially when analyzing the behavior of optical cavities, where light repeatedly bounces back
and forth. This discrepancy in the bibliography makes it very difficult to extract information from
different sources.

A solution is to use the optical power to describe the subcomponents of an optical system. All
bibliography is in coherence here, since a converging optical system is described by positive
optical power, while a diverging optical system by negative optical power. The direction of
propagation does not affect this property so this is very simple to be implemented in the case of an
optical cavity.

18



In more detail, for reflection matrices, when the surface of incidence is concave, light converges
and optical power P is always positive, while in the case of convex, light diverges and optical
power P is always negative.

The table that follows makes clear that no matter what description one uses, optical power depends
only on the surface of incidence. Whether radius of curvature is positive or negative, depends only
on the optical power, as defined in the present text.

19



+z

Type of Surface Optical Radius of
& displacement| PowerP Curvature Ri
Concave P > 0
p Zni Ri <0
— R
P>0
\\__ 2n; R; >0
. R
ray P < 0
= 2n; | Ri>0
..__\\ P = ——
N R,
. P<O
| = 2n; R; <0
— R,

Table 2 Optical power depends on the surface of incidence and radius of curvature on the

optical power.
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1.3.5 Properties of ABCD Matrices

It is necessary to point out some properties of the ABCD matrices defined above. For square
matrices of equal size, the following property applies:

det(Ml ' MZ "t Ml) = det(Ml) ' det(Mz) T det (Ml) (31)

For random optical system, the final ABCD matrix M that describes it, will derive from several
multiplications of displacement, refraction and/or reflection matrices.

It is obvious that all determinants of the matrices that were derived is equal to 1 and as a result of
Eq.(31), every ABCD matrix M that describes a random optical system, in paraxial approximation,
will have the following property:

det(M) =1 (32)

This is a very useful relation, which allows to check the validity of a resultant matrix which
describes some optical system.

21



Chapter 2 — Optical Cavities

An optical cavity (or optical resonator) is comprised of two mirrors (curved or not) with high
reflectivity, placed one opposite to the other. As a result, when light enters the cavity, is being
reflected back and forth due to multiple reflections on both mirrors and light performs some kind
of oscillation inside it.

Cavity

Mirror

ray

Optical axis z

ray Mirror

Ry

Fig. 6 An optical cavity.

2.1 Stability Condition for Optical Cavities

Stable cavities are defined as those that allow light to remain inside them after multiple reflections,
while unstable cavities make light diverge and leave the cavity after multiple reflections.

In geometrical optics, when the ray starts from one mirror and reaches back to the same mirror
again, one roundtrip has been performed. In order to treat stability, unit cell is defined as the total
matrix that represents one roundtrip inside the cavity.

The general case will be considered here, meaning that mirrors will be of the same type (either
both concave or both convex) or of different types (concave and convex). This means that radii of
curvature that will be used, have undetermined sign in order for the general case to be covered.

22



In the next images, all possible types of cavities are depicted and the ray moving from mirror 2
and back again has completed one roundtrip.

Concave - Concave

Cavity
Mirror
Ry
ray (" (2)
E H| Optical axis z
(3)
ray Mirror
R
1
(4)
()
Concave - Convex
Cavity
(4) ray
(3)
ray (1) (2)
E H| Optical axis z
Mirror Mirror
R, R,

Fig. 7 Two different types of cavities, (a) concave-concave and (b) concave-convex.
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Convex - Convex
Cavity
(4)
(3)
ray
ray 1
(1) @)
E H| Optical axis z
M:;ror Mirror
2 R,
(a)
Convex - Concave
Cavity
) ray
(3)
E H
Optical axis z
ray (1)
Mirror Mirror
R2 R1

Fig. 8 Two different types of cavities, (a) convex-convex and (b) convex-concave.

In all the cases above, the ray is confined inside an optical cavity of length L = EH > 0,
propagating in air - index of refraction n = 1. It starts from mirror 2 on the left following path (1)
and gets reflected from mirror 1, which has radius of curvature R; (algebraic value). Then follows
path (3) until it reaches back to mirror 2 again, which has radius of curvature R, (algebraic value)
and get reflected. The total path of the ray that was described, constitutes one roundtrip (or else
one unit cell) for the ray.

To find the total matrix that describes one roundtrip for the ray, the total path is broken to one
displacement matrix for path 1, followed by a reflection matrix for mirror 1, again a displacement
matrix for path 2, ending with a reflection matrix for mirror 2. The ABCD matrix representation
follows:

24



[ 1 0 1 L] 1 0 [1 L
M ] _i ] | | |:3 ] |
R, 1 lo 1 R 1{ lo 1

1

and by simplifying the total matrix, the result is:

R, +2L 2LR; + 2L*
Ry Ry

A B

M =\2R, —2R; —4L (R, + 2L)R, — 4LR; — 4L*|= [C D

l Rle RlRZ J

What follows, are the equations for 2 consecutive unit cells (index of refraction n = 1):

=1 ol L.

i =[c ol g

with m =0,1,2, ....

Starting from Eq.(35),

{ym+1 = AYm + Bfm N {ym+1 — Aym = Bfn
Bm+1 — CYm = DB

Bm+1 = Cym + DBy

and dividing both equations to eliminate £, ,

Ym+1 — Aym

_ B
.8m+1 - Cym D

the result is:

]

(33)

(34)

(35)

(36)

(37)

(38)
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Bfmy1 — BCyy = D(ym+1 - Aym) (39)

The Ay,,+, term is added on both sides for later use,

AYmi1 + BBmi1 — BCYm = Aymaqr + D(ym+1 - Aym) (40)

The equation above is a sequence that involves both the ray height and the inclination. Proceeding
with Eq.(36), only the first equation that arises is needed in order to eliminate inclination from the
sequence,

Ym+2 = AYm+1 + BBmia (41)

Substitute Eq.(41) into Eq.(40) the result is:

Ym+z — (A+ D)ymy1 + (AD — BC)y,, = 0 (42)

But from Eq.(32), (AD — BC) = det(M) = 1, and Eq.(1.42) can be written as:

VYm+2 — (A + D)ym+1 +Ym =0 (43)

The sequence of Eq.(43) is the discrete analogous of the harmonic oscillator differential
equation[5]. As a result, exponential solutions are expected, that will either have real exponent and
in this case the ray will deviate from the cavity, or imaginary one and the ray will oscillate inside
the cavity. So, imaginary solutions must be imposed.

Solution: y,, = y, - et™? (44)

Imposing Eq.(42) into Eq.(41),

Vo * ei-(m+2)-9 _ (A + D) Vo ei-(m+1)-9 + Yo - ei-m-@ =0 (45)

and factorizing,
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yoret™0 . (et29 —(A+D) e +1)=0 (46)

the result is:
(ei®) —(A+D)-e®+1=0 (47)
which is a quadratic equation with e as variable and the discriminant is,

A=(A+D)?*—4 (48)

Because e?® = cos6 + i - sinf is in general an imaginary number (e C), the discriminant must be
negative number (4 < 0) and the solutions are,

eii-e_(A+D)ii'*/4_(A+D)2

2 (49)

or written in another form,

ei i-6

A+D A+ D\?
=( > )ii- 1—( > )=c050ii-sin0 (50)

Consequently, from Eq.(42) and Eq.(48) the height of the ray inside the cavity, measured with
respect to the optical axis is:

m
(A+D) A+ D\?
ym = Yo | 5 £ 1" 1—(2 ) (51)
or else,
Ym = Vo * (cosO +i-sinf )™ (52)
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The real part of the solution in Eq.(48) is of interest which is equal to a cosine term, for which the

well-known inequality —1 < cosf < 1 applies, resulting in:

A+D
2

-1< <1
or by adding 1 in all parts,
A+D+2
<——— <

Using the values of A and D from Eq.(32), the result is:

_ .
o< Bt DR —LR — 12
RyR,

and by factorizing,

0<(1+L> (1 L><1
<(1+x )<

Eq.(54) is the stability condition for random cavities and can be written as:

Osg1g2S1

(53)

(54)

(55)

(56)

(57)

Where g, = (1 + L) , g2 = (1 — i) , L = length of the cavity and R;= radius of curvature of
R1 R,

each mirror taking either positive or negative values depending on the occasion as described in

Table 2.
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2.1.1 Mapping for Stable Cavities

The following plot of Eq.(57) shows in which regions stable cavities exist , for different values of
the parameters g; and g,.

Stable Cavities
3 T T | T T
ll\
\
2 \ -
Two plane
Unstable J/ mirrers
1 — -
Stable 1
50
—— Cenfecal
__—__H-"""H-,_
-1+ / _
Spherical
_2 — —
\
\

3 ] 1 \ ] ]

-3 2 1 a 1 2 3
01

Fig. 9 Mapping for stable cavities - g, versus g,

Moreover, is also useful to map stable cavities by using Eq.(56). The following plot shows the
stable regions for different values of both radii of curvature as they are defined in Table 2.
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Radius of
Curvature R2
A

Confocal

Spherical .
Fo) Radius of

Curvature R

1

@ Stable

QO Unstable

Grey region = Stable
White region = Unstable

Fig. 10 Mapping for stable cavities - R, versus R,

In the figures above, two types of stable cavities are pointed out, spherical cavity and confocal
cavity with the later being a strong candidate to be tested experimentally (in the next chapter this
will be more obvious). Furthermore, the two plane mirrors cavity is stated too, but is stable only
under one extra condition, that the rays must always be parallel to the optical axis in order to
remain inside the cavity.

The following figures depict the geometry of the pointed cavities.
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Confocal Cavity

Mirror

R,

Optical axis z

Mirror

Ry

Fig. 11 Geometry of confocal cavity.

Spherical Cavity

Optical axis z

Mirror Mirror

R, R,

Fig. 12 Geometry of spherical cavity.
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2.1.2 Geometrical Operation of Cavities

In this section, some numerical simulations [Ref: D. G. Papazoglou (2020)] will be presented in
order to visualize how light rays oscillate or not inside a cavity. These numerical simulations were
created in Maxima [9], a computer algebra system, which is a free computer software. The code
that was developed to perform these numerical simulations uses ABCD matrix theory.

In the following examples, rays will enter different types of cavities (with R; being the radius of
curvature of the right mirror, R, of the left mirror and L the cavity length), in different
configurations (different initial height y, and different initial inclination g, both with respect to
the optical axis).

Example 1

Confocal cavity with |R,| = |R,| = L = 10 cm . Rays enter the cavity at y, = 1 cm without some
initial inclination, g, = 0,

Rz Confocal Cavity R1
STABLE
Yo
0 L
Yo
0 L2 L

Fig. 13 Path of the rays inside the cavity after 50 roundtrips.
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Confocal Cavity

¥ (height of the ray)

N {number of roundtrips)

Fig. 14 Height of the ray inside the cavity as a function of the number of roundtrips.

In this configuration it is obvious that the cavity is stable and rays oscillate inside the cavity with

a period of two roundtrips, meaning that every two roundtrips the rays reach at the same height.

Example 2

Confocal cavity with |R;| = |R,| = L = 10 cm . Rays enter the cavity on the optical axis, y, = 0,

with initial inclination of 8, = 0.4 rad,
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Yo r

Confocal Cavity

STABLE

0

L/2

L

Fig. 15 Path of the rays inside the cavity after 50 roundtrips.

Y (height of the ray)

Confocal Cavity

0.5

-0.5

4 ] &6 7

N (number of roundtrips)

10

Fig. 16 Height of the ray inside the cavity as a function of the number of roundtrips.
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In this configuration, light rays are always on the same initial height after each roundtrip and the

light is limited inside the cavity.

Example 3

Cavity with one flat mirror, |R,| — oo, the other curved with radius of curvature of |R;| = 40 cm
and cavity length of L = 10cm. Rays enter the cavity at y, = 0.5 cm with initial inclination of

o =0.17rad,

Yo T

_yU L

Flat-Curved Cavity
Stable

L2

Fig. 17 Path of the rays inside the cavity after 50 roundtrips.
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1.5

0.5

-0.5

¥ (height of the ray)
=

-1.5

Flat-Curved Cavity

3

10

15 20 25 30 35

M (number of roundtrips)

40

45

a0

Fig. 18 Height of the ray inside the cavity as a function of the number of roundtrips.

This cavity is a stable one and from Fig. 18 it is obvious that the rays have a period of six

roundtrips.

Example 4

Spherical cavity with |R;| = |R,| = 5 cm and cavity length of L = 10 cm . Rays enter the cavity
at yo = 0.5 cm with initial inclination of 8, = —0.1 rad,
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Rz Spherical Cavity R
vo | STABLE
0
0 L
-y[:l L
0 L/2 L

Fig. 19 Path of the rays inside the cavity after 50 roundtrips.

Spherical Cavity

0.506 T T T T T T T

0.504 - N

0.502 N

0.5 & T & T L & & & A

0.498 1

¥ (height of the ray)

0.496 1

0.494 | | | | |

M (number of roundtrips)

Fig. 20 Height of the ray inside the cavity as a function of the number of roundtrips.
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From more simulations on spherical cavities, it was made clear that light is confined inside these
cavities if and only if it enters so that its path passes from the middle of the optical axis at L/2.
Only then a spherical cavity is stable.

Example 5

Spherical cavity with |R;| = |R,| = 5 cm and cavity length of L = 10 cm . Rays enter the cavity
at y, = 0.9 cm with initial inclination of 5, = —0.1 rad,

Spherical Cavit
Rz P y R1
STABLE
Yo/ —n
I
0r y _ |
o
e - _.-—""-./
Yo [ -
. - rd
e
~
» g
e
d
-
-
d
o
Ve
0 L/2 L

Fig. 21 Path of the rays inside the cavity after 50 roundtrips.

As the path of the rays does not pass through the middle of the optical axis at L/2, light will
eventually leave the cavity after some roundtrips. In these cases spherical cavity is not stable.

Example 6

Random cavity with |R;| =11 cm , |R,| = 12 cm and cavity length of L = (|R,| + |R2])/3 .
Rays enter the cavity at y, = 0.9 cm with initial inclination of 8, = 0.3 rad,
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Random Cavity
STABLE

0 L2 k

Fig. 22 Path of the rays inside the cavity after 100 roundtrips.

Random Cavity

Y (height of the ray)
=

T e

L L]

(] % Lo
. ° e ® e ® e
-3 - . L @ a9 19 g ® | g |
0 0 20 30 40 50 60 7O 8O 90 100

M (number of roundtrips)

Fig. 23 Height of the ray inside the cavity as a function of the number of roundtrips.

The rays inside this cavity seem to follow some periodicity and the cavity is a stable one.



2.2 Gaussian Beams

In most cases of laser light beams, the Gaussian beam profile describes the light that is emitted.
Gaussian beam is a monochromatic electromagnetic wave whose both transverse electric and
transverse magnetic field amplitudes, and as a result its intensity profile, are described by a
Gaussian function.

In what is to follow, the space distribution function will be derived in paraxial approximation.
The time independent wave equation is given by:

V2E +k?E =0 (58)

Where k = 2mn /A, is the wavenumber and n is the index of refraction of the medium.

For the spatial solution of the above equation, one can think that the wave will have some
amplitude E, , it will propagate almost as a plane wave exp (ikz) and almost means that there will
be a factor of deviation 1 (x, y, z) from plane wave[5]. As a result, the expected solution will take
the following form:

E(x,y,z) = E,2y(x,y,z)exp(—ikz) (59)

Substituting Eq.(59) to the wave equation Eq.(58) , the result is:

0%y 0% 0%y Y
— 2k - = 60
22 T 3y + 372 i2k e 0 (60)

But in paraxial approximation the term 92y /dz? is small compared to the rest of the terms, and
Eq.(60) can be simplified to the paraxial wave equation:

20 9% M
—+——i2k—=0 61
0x? = 0y? Moz (1
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2.2.1 Propagation of a Gaussian Beam

Assuming cylindrical symmetry, the beam profile will be a function of the radial coordinate r =

NeEsvs

= {—'lp( )4 l} (62)
Yo =expi—i|P(z 202

The deviation factor i, should contain a function P(z) which will change the phase of the wave
as it propagates through z axis and also a function q(z) in the denominator of the Gaussian
profile to change the field as it spreads out with r. Eq.(62) will be imposed to the differential
equation Eq.(61) and the functions P(z) and g(z), which are functions of the propagation
distance remain to be determined. The result is:

»{G

In order Eq.(63) to be valid Vr, the following relations must occur:

2

(q(z)—n]r ~2k[P(2) + ()} 0 €3]

g (z)-1=0 (64)

and

P(z)+ﬁ=0 (65)

By integrating Eq.(64) the function of g is derived:

q(z) =z+q(z=0) (66)

Eq.(62) has to contain a real part for Electric field of Eq.(59) to change in the transverse plane
xy. This means that g(z = 0) has to be an imaginary number:

q(z =0) = qo = iz (67)

Calculating Eq.(62) on z = 0:
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, kr?
Yo(z = 0) = exp[—iP(z = 0)]exp <— g) (68)
0

and the following quantity is defined, considering that the wavenumber k = 2nn/A,:

27, ).020
2 _ “%0 _ Ao%o (69)
o k mn
or
2
mnwy
ZO = (70)
Ao

where w,, is known as the minimum spot size (waist on z = 0 ) of the beam and z, (also symbolized
in bibliography as zy ) is known as the Rayleigh range.

Considering Eq.(67) the inverse of Eq.(66) is computed:

11 2
q(z) R(2) B lnnwz(z)

(71)

where the two new defined functions R(z) and w(z) are the radius of curvature of the beam and
the waist of the beam, respectively:

R(z2) =z [1 + (?)2] =z [1 + <n:;:§>2] (72)

zZ\? zA 2
wi(z) = wé [1 + (—) l =wi|1+ < 2> (73)
Zy nw
Finally, P(z) can be determined by integrating Eq.(65):
Z
iP(z) =In [1 —1i (—)] (74)
Zo
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Which can be simplified considering polar coordinates of complex numbers: ¢ = |c|e‘?, where
c=a+ib,|c|=Vva?+b?and b = atan(s):

. Z 2 1/2 . Z
iP(z) =In [1 + (z_0> l —iatan (%) (75)
or using Eq.(73):
iP(z) =In [WMEZ)] —iatan (zi) (76)
0 0

All parameters of Eq.(62) have been calculated and the free space solution under paraxial
approximation (or also known as fundamental Gaussian mode) of the Electric field is:

kr?

R@D) atan (i)l} (77)

In the following image, one can clearly see the geometrical meaning of all the parameters defined
earlier while the beam spreads.

kz +

E _F Wo r? ,
(x,y,2z) = Omexp e exp{—i

R(z) Ez)]
/" w(z)

R

Fig. 24 Geometrical parameters of a Gaussian beam as it propagates (taken from [4]).

2.2.2 Properties of Gaussian Beams

Some important things that have to be pointed are following.
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Twice the value of the polar coordinate r in which the Electric field of Eq.(77) drops to half of it’s
total value, is named as FWHM (Full Width at Half Maximum), and is defined as:

FWHM = 2VIn2 w(z) (78)

In most bibliographies, this value is referred instead of the beam waist, but they are linearly
analogous quantities and there is not much difference on which one refers to.

Rayleigh range z, of Eq.(70) is the point on the optical axis, where the surface of the beam’s spot
on a transverse plane, gets doubled, or the point where the waist of the beam gets w(z,) = v2w,.

Fig. 13 shows the dependence of Rayleigh range as a function of the minimum waist for different
wavelengths.

10
2
8 . Efr:;
6
=
o 4
(N
2
800 nm
0
0 5 10 15 20 25
W, (Him)

Fig. 25 Dependence of Rayleigh range with the beam waist for different wavelengths (taken from

[4]).

It’s clear that for increasing values of wavelength of the same waist, the Rayleigh range decreases,
meaning that higher wavelength beams spread faster. To make this point clear, we have performed
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numerical simulations using Virtual Lab wave propagation code («®) which models the
propagation of optical waves in a 1D+1 scheme using the angular spectrum approach [Ref: w?
Virtual Lab open source wave propagator, D. G. Papazoglou (2015)].
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Fig. 26 In all figures, intensities come from Electric fields that have the same FWHM=20mm
(same waste) on z=0. a) refers to 200nm, b) to 400nm and c¢) to 800nm. Vertical axis z refers to

the propagation axis and the horizontal is a transverse x direction to the propagation.

Furthermore, from Fig. 26, one more information can be extracted, that for the same wavelength,
a beam of smaller waist, spreads faster than one with a higher waist. The following simulations
[Ref: ws Virtual Lab open source wave propagator, D. G. Papazoglou (2015)], make this point

clear.
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Fig. 27 All figures are of the same wavelength 2=200nm. The first three vertical figures named
as a) refer to a FWHM=2.5mm (minimum waist on z=0), while those in b) to a FWHM=10mm.
Vertical axis z refers to the propagation axis the horizontal is a transverse x direction to the

propagation.
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2.2.3 ABCD Matrix Theory for Gaussian Beams

It is necessary to state that ABCD matrix theory, as described in paragraph 1.3, applies also to
Gaussian beams giving information about the evolution of the beam as it propagates through an
optical system.

For a Gaussian beam propagating through an optical system, from z; to z, , of a given ray transfer
matrix [‘g g], the following equation describes its propagation,

1G] =2 D] (79)

where q(z) is the complex quantity for Gaussian beams of Eq.(66). Through matrix multiplication
one can result in the following equations,

q(z;) = Aq(z) + B
{1=m@g+u (80)
Dividing these two equations by parts, the result is,
Aq(z,) + B
— 81
1) Cq(z;) +D (&1

From Eq.(71) it is obvious that by knowing the complex quantity ¢ at some point z, it is possible
to find the radius of curvature R and the waist w of the Gaussian beam of wavelength A, , at this
specific point z. An example follows to make things clear.

For a Gaussian beam being displaced by distance d in air (n=1) from z; to z, , the ray transfer

matrix is [(1) d]. As aresult, Eq.(81) yields,

q(zz) = q(z1) +d (82)
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Meaning that the complex quantity q(z) have changed only by its’ real part by d, as the beam
propagated from z; to z,.

2.3 Resonant Optical Cavities

2.3.1 Modes Inside Cavities

Gaussian beams propagating inside cavities can be described by certain wave functions depending
the way they propagate. If a Gaussian beam inside a cavity displays cylindrical symmetry, then
Eq.(77) is the one that describes that kind of Gaussian beam. In this section, different ways of
propagation of a Gaussian beam inside a cavity, will be introduced. These different ways of
propagation are known as Transverse Electric and Magnetic modes or TEM,,,,, modes and the
fundamental mode TEM,, is given by Eq.(77).

By looking for solutions of Eq.(61) with no cylindrical symmetry (Véqt 0), one can get the higher
modes TEM,,

E E,H, v2x s &
(x,y,2) = l (3] w(z)lW(Z) l WZ(Z)l
exp {—i

o d4n+ (Z )
2R (1 +n+ m)atan 7
with n and m being integers (n,m = 0,1,2, ...) and they refer to the transverse directions (x and
y) to the propagation axis z.

(83)
kz +

The last exponential term of Eq.(83) denotes the phase of propagation which accumulates like a
plane wave (as kz), but also has an additional Gouy phase that depends on the mode numbers (
—(1 + m+ p)atan(z/z,) ) and a radial curvature term ( kr?2/2R(z) ).

where Hy,(x) = (—1)Pe x? are the Hermite polynomials of order p, some of which are stated
below.
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Hy(x) =1

H,(x) = 2x

Hy(x) = 4x?% — 2 (84)
Hi(x) = 8x3 — 12x

Hy(x) = 16x* — 48x% + 12

Indexes n and m in Eq.(83) indicate how many nodes do the polynomials exhibit in x and y
direction, respectively. In the following figure, some of the TEM,, ,,, modes are depicted.

Fig. 28 Graphical representation of some of the TEM,, ,,, modes. (taken from [10] )
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2.3.2 Longitudinal/Axial Resonant Modes

When light enters an optical cavity, it experiences multiple reflections from both mirrors. By
considering the light inside the cavity as just a plane wave, in one round trip, the factor of phase
change of the wave is equal to:

exp (—ik2L) (85)

where K is the wavevector and L is the cavity length.

If the phase change is an integral multiple of 2z this means that the cavity is on resonance. This is
called resonance condition:

2kL = q2m (86)

where q is an integer number (g = 1,2 ...).

Considering that k = 2rn/A, and n = 4,/4 , EQ.(86) can be written as:

L =— (87)

which is a familiar result for someone that has studied wave mechanics. It reminds the condition
for standing waves of some wavelength A on a string of length L. Indeed, this is the case. Eq.(87)
states that there must fit integral multiples of half the wavelength between the cavity mirrors. This
is what the following image depicts.
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Fig. 29 Longitudinal/axial modes inside a cavity (taken from [11]).

In terms of frequency, considering that A = c/v and ¢ = ¢, /n, EQq.(87) results in,

™} (88)
and for two consecutive resonant frequencies,
Co
Av = Vg+1 — Qv = ﬁ (89)

This spacing between two resonant frequencies in known as FSR (Free Spectral Range):

FSR = 2 (90)
~ 2nlL

In the following picture, there is a schematic description of the resonant frequencies.
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Axial
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Fig. 30 Red lines represent only three of the longitudinal/axial resonant modes inside a cavity.

2.3.3 Higher-Order Resonant Modes

By considering that the light inside the cavity has the general form of Eq.(83), higher-order modes
arise, known as Hermite-Gaussian modes.

When cavity is on resonance, light described by Eq.(83) reproduces itself in both relative shape
and phase after one round trip. Essentially, this occurs when a cavity’s mirrors match exactly the
beam wavefront. These boundary conditions fix the focus relative to the mirror positions. In the
following image, a resonant cavity is depicted. At z = 0 is taken to be the beam waist or the focus
inside the cavity and L = z, + z, is the length of the cavity. At points z, and —z, the radius of
curvature of the beam, perfectly fits the curvature of the two mirrors.
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Mirror

Fig. 31 Wavefronts (dashed lines) inside a resonant cavity.

In this case, the effect of the mirrors is to simply reverse the wavevector k of the light beam. After
one roundtrip, light returns to itself.

From Eq.(83) the phase of the wave inside the cavity will be:

k 2
o(r,z) = kz+TEZ)— (1+ n+ m)atan (ZZ—O) (91)

Working on the optical axis (r = 0), the phase change in one roundtrip, is twice the phase change
accumulated from z; to z,:

Ay = 2[9(0,22) — (0, —2z1)] (92)
or,
Apre =2kL—2(1+n+m) [atan (?) — atan (;)] (93)
0 0
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As stated in EQ.(86), for resonant cavities, the phase change for one roundtrip must be integral
multiple of 2z, and by rearranging Eq.(93):

YA} Zq
2kL =q2n+2(1+n+m) [atan (—) — atan (—)] (94)
ZO Z()

But kL = 2nnlL /A, = 2nnvL/c, and from EQ.(90) kL = nn/FSR . As a result, Eq.(93) gets the
following form:

v = FSR {q + (1+171T—+m) [atan (j—j) —atan C—;)]} (95)

In order to simplify the Gouy phase terms, Eq.(72) will be used, calculated in z, and —z;,
accompanied by the length of the cavity L = z, + z;:

2
R(_Zl) = _R1 = —Z Il + (z_:) l (96)
R(z) = R, = 1+(Z—°>2 (97)
Zz) = Ry = 2 7,
L= Zy + Z1 (98)

The equations above, comprise a 3x3 system that can be solved. The results are:

_dR — DRy —L)(Ry + Ry — L)

2 99
0 (R, + R, — 2L)2 (99)
L(R, — L)
=~ < 7 100
AT R +R,-2L (100)
L(Ry —L)
- - 101
%2 = R +R,-2L (101)

Using these results in Eq.(95) and simplifying it further, one can get:
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} (102)

Looking at some special case, where the first mirror is flat and is located on z = 0, the second is
curved with radius R, located on z, = L and that the cavity is resonant (phase fronts matches exactly

the mirror curvatures), one can get:

v = FSR {q + @acos l\/sign [ZL (Rlz-;RZ — 1)] (1 — Ril) (1 — Riz)

Zo\ 2
=R, = = 103
R(z,) = R, L[1+(L)] (103)
and solving for z, :
L
2y = J (LR,) (1 _ —) (104)
R,
But, z, is the Rayleigh range, a real and measurable quantity. This means that:
1 L >0 (105)
R, —
or
R,
—>1 (106)
.=
In a similar way, the same relation can be argued for:
Ry (107)

—=1
L

Adding up Eq.(106) and Eq.(107) , the result is:
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Ri+R,

1>0 (108)
2L

R1+R; _

And now it is clear that sign [ZL ( m

modes is:

1)] = 41 in Eq.(102). Thus, the final relation for higher order

} (109)

orusingg; =1— %as it was defined in ABCD matrices for the stability condition 0 < g,g9, < 1:

= FSR +(1+n+m) (1 L)(l L)
Vgnm = q p- acos R, R,

1
Vgnm = FSR {q + Wacoswglgz)} (110)

where, index q refers to the longitudinal modes and indices n and m to the transverse x and y
modes.

From Eq.(109) it is obvious that more resonant frequencies have added up to the longitudinal/axial
ones. These extra resonant frequencies are shown in the image below:
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Fig. 32 Longitudinal (axial) and the transverse modes in a cavity as a function of frequency.

2.3.4 Degenerate Modes

Examining Eq.(110), it is possible to eliminate the Gouy term ™™ gcos( /g, g,) when

s
J 9192 = 1. This can occur for certain geometries like, for example, the concentric cavity, where

R; = R, = R and L = 2R or the two plane mirrors cavity, where R; = R, = o .

These cavities are referred to as degenerate because the resonant frequency vg,,,,, depends only on
the longitudinal mode index q and if the same for all transverse modes n and m. Schematically,
this means that in Fig.(32) all the higher order modes have collapsed to the axial mode.
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Chapter 3 - Imaging System Design

In this chapter, we are going to present the optical system designed for the imaging part of our
experiment. Optical design is the process of designing an optical system in order to comply with
the required specifications like, for example, performance goals.

We will start by discussing about some important parameters, which characterize the performance
of an imaging system and optical aberrations. Next, we will introduce an existing imaging system
and then we are going to combine it with the cavity and evaluate its performance.

3.1 Performance Parameters and Optical Aberrations

Some important quantitative parameters that characterize the performance of an imaging system
are the numerical aperture NA and the optical resolution.

3.1.1 Numerical Aperture

Numerical aperture NA was defined in section 1.2 and is given by Eq.(9) NA = nsind. This
quantity is restricted by the size of the first optical element (e.g. lens) after the light source, as rays
are limited by the size of the lens (this can be seen in the following image). In that sense, numerical
aperture has a maximum value when 6 = 6,,,,, -

Fig. 33 Light rays limited by the size of a lens.
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3.1.2 Optical Resolution

Optical resolution R, is defined as the minimum distance that an imaging system can separate
between two point sources on the object [12]. It is affected by the numerical aperture NA, the
wavelength A of the source used and is given by,

0.6124
R =

NA (111)

Optical resolution R is straightforwardly connected to the angular resolution of an imaging system
which is the smallest angle between two different point sources that can be distinguished.

In microscopy, there is a limit of optical resolution R which is restricted by the wave nature of
light due to diffraction. When light of a point source passes through a small circular aperture,
diffraction of light occurs and a diffraction pattern is produced known as Airy pattern and the
central brighter disc known as Airy disk. This pattern can be seen in the following image.

Fig. 34 Airy pattern due to diffraction from circular aperture. (taken from [13])

Airy disk defines the limit of resolution R that can be achieved by an imaging system, which is the
smallest radius of the spot in image plane where an optical system can focus a light beam.
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Rayleigh Criterion states that two objects will be resolved when they have at least distance R
between them. In other words, this Criterion describes the ability of an imaging system to separate
between two Airy discs coming from two different point sources in the diffraction pattern. In this
case, the imaging system is said to be diffraction limited. This can be seen in the following image.

(c)

Fig. 35 Airy discs coming from two different point sources of distance between them (a) greater
than R, (b) equal to R (Rayleigh Criterion), (c) less than R. In (a) and (b) the two different point
sources can be distinguished while in (c) they can’t. (taken from [14])

3.1.3 Optical Aberrations

Optical aberrations refer to any deviation of the performance of an optical system from the ideal
paraxial approximation predictions [15]. They are caused due to the geometry or the imperfections
of the optical elements (e.g. lenses) used, or due to the fact that different wavelengths follow
different paths when propagating in matter. Aberrations cause deformations to the ideal paraxial
shape of the waveform that exits an optical system. As a result, the image formed in the exit of an
optical system is either blurred or distorted depending on the type of the existing aberration [7]. In
order to deal with aberrations when designing an imaging system, lenses with opposite sign
aberrations (e.g. converging and diverging lenses) are combined together, trying to eliminate
aberrations through the whole optical system as much as possible.

Aberrations are divided in two types, the monochromatic and chromatic aberrations [16].
Monochromatic aberrations are spherical aberrations, coma, astigmatism, field curvature, image
distortion and defocus, while chromatic are divided in longitudinal and transverse aberrations.
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For the purpose of this thesis, in what is to follow, only some monochromatic aberrations will be
discussed.

Spherical aberrations

An ideal/thin lens, focuses all light rays passing along the lens in one point, as one can see in the
following picture.

Fig. 36 Perfect lens focuses all light rays in one point. (taken from [17])

But, of course, ideal lenses do not exist. Due to the geometry (curvature) and the thickness of the
lens shown in Fig.(36), light rays coming from the edges of the lens (marginal rays) propagate in
a shorter distance inside the lens and therefore they are refracted earlier than the rays near the
optical axis (paraxial rays). As a result, lenses are unable to focus all light rays in the same point,

as it is depicted in the following image.

Fig. 37 In a non-ideal lens, light rays do not focus at the same point in the exit. (taken from [17])
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When the focal length of marginal rays of a lens is shorter than the focal length of its paraxial rays,
the lens is characterized by positive spherical aberration, like the converging lens in Fig.(37). The
opposite means that the lens is characterized by a negative spherical aberration (e.g. diverging
lens). Consequently, spherical aberrations can be reduced by combining lenses of opposite
spherical aberration.

Coma aberration

Coma aberration appears when the object we want to image is not located on the optical axis. It is
defined as a variation in transverse magnification between marginal and paraxial rays and as a
result, the image appears to have a tail (like a comet) known as coma tail. To deal with this
aberration, one can tilt the lens or the whole optical system in order to locate the object on the
optical axis [18].

Fig. 38 Coma aberration and the coma tail formed in the image plane. (taken from [19])

3.2 Optical Simulation Software

Nowadays, there are several optical simulation softwares that are used widely to design and
analyze imaging systems. Zemax-OpticStudio [20] is a well-known raytracing optical software
which we used for the purposes of this Master thesis. This software helped us to design our imaging
system, evaluate its performance and tried to improve the performance further.

Getting started with Zemax, we need to define the actual optical materials comprising our optical
system, in Zemax’s interface. For example, this means that we need to define radii of curvature of
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the two surfaces of a lens, its thickness and diameter and the type of the material (glass type) that
it is made up from. Moreover, Zemax comes with built-in libraries that contain data for various

lenses from many optics design companies and can use them straightforward instead of designing
lenses from scratch.

As an example of designing an optical system using Zemax we perform the following steps. After
creating the optical system we want, we choose type of source (e.g. point source of some NA), we
choose the wavelength of the light rays and Zemax creates a layout showing how rays propagate
in the optical system (Fig. 39) and a spot diagram calculating the spread of the rays at the end of
the optical system scaled to the Airy disk (black circle) diameter (Fig. 40).

—
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CONFIGURATION 1 OF 1

Fig. 39 Layout example in Zemax optical design software. Light rays (in blue) propagate
through a lens.
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Fig. 40 Spot diagram example in Zemax optical design software. Spot of the rays at the end of
the optical system shown in Fig. 39 and the corresponding Airy disk (black circle).

The spread of the rays shown in Fig. 40 of our example, is caused by spherical aberrations
described in the previous section.

Zemax also gives the ability to move the light source off the optical axis or even to rotate either
parts of the optical system or the whole optical system with respect to some axis. Furthermore, it
can automatically optimize an optical’s system performance, using the merit function which is
defined as a least square function. At first, we need to define the optimization parameters. Such
parameters can be the radius of curvature of an optical element or the distance between two optical
elements. Next, the optimization target needs to be defined. For instance, we want to minimize the
spot size of the light rays coming out from our imaging system (minimize with respect to RMS
radius depicted in Fig. 40). Finally, we let Zemax run the optimization and it stops when the merit
function reaches as close to zero as possible, giving us the optimized values for each of the
parameters defined.

3.3 Designing the Imaging System

For the purpose of this master thesis, we want to combine the cavity with two optical systems, one
before the cavity and one after the cavity. In this way, the optical system before the cavity will
drive light inside the cavity to interact with our specimen and the latter optical system will collect
light coming out of the cavity in order to create our image, as we can see in the following figure.
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Cavity

Fig. 41 Optical system before the cavity will drive light inside the cavity to interact with our
specimen and the latter optical system will collect light coming out of the cavity in order to
create our image.

At this point, we are going to present an existing imaging system, that was used in the past in our
laboratory. Back in 2011 Dr. Melina Pappa, published her PhD research [21], which took place in
Cretan Matter Waves (BEC) laboratory and for the purpose of her research, she constructed a 4 f
imaging system.

The imaging system is comprised of two identical lensets and each lenset is composed of an
achromatic doublet (Melles-Griot, LAO-160.0-31.5-780) and a meniscus lens (Melles-Griot,
MENP-31.5-6.0-233.6-780). Between the two lenses there is a 1mm distance.

Using Zemax, we optimized the distances for the lensets using a merit function, in order to get a
minimized RMS radius (for NA=0.12 and a wavelength of 780nm). A layout is shown in the
following image for a source on the optical axis of the system.
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Fig. 42 A layout of the existing imaging system with distances optimized with respect to the RMS

radius of the spot in the image plane. The system is symmetric.

And the corresponding spot diagram is the following.
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Fig. 43 Spot diagram of the optimized existing imaging system.

As we can see the resolution corresponds to an Airy disk of 7.93um diameter and the RMS radius
is 3.4um. This means that the imaging system is very close to the diffraction limit, as Dr. Pappa
states in her thesis.

Due to its good performance and the fact that this imaging system is available in the BEC lab, we
are going to combine it with the cavity. So, as we can see in the following figure, we will use the
existing imaging system before and after the cavity, to serve as the optical systems in Fig.41.

Existing imaging system Cavity Existing imaging system

Half system

Fig. 44 Cavity combined with the existing imaging system.
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Next step is to check the performance of this whole system in Zemax. But as we can see in Fig.44,
the system is symmetric and we only need to check the performance for half the system, as we do
in the following sections.

3.4 Cavity Combined with the Existing Imaging System

At this stage of the thesis, we are ready to combine an optical cavity with the imaging system
described previously and check for its performance.

3.4.1 Confocal Cavity composed of Plano-Concave Mirrors
3.4.1.1 Source on the optical axis

At first, we want to check the performance of a confocal cavity comprised of two plano-concave
mirrors (Laseroptik - S-00071) which have radius of curvature R = —100mm . This means that
each mirror must have a distance of 50mm from the center of the cavity where we will place the
specimen we want to image, as we can see in the next figure.

50mm
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Fig. 45 Layout of the confocal cavity combined with the imaging system.
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From now on, all optimizations are performed for NA=0.12 and A=780nm.

We will now optimize the distance between the plano-concave mirror and the first element of the
imaging system using merit function, in order to minimize the spot of the image at the end of the
system. The optimal distance we find is 43.94mm, as it is depicted bellow. The rest of the distances
not shown are the same as in Fig.42.

50mm

43.94mm
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Fig. 46 Optimized distance between the cavity and the imaging system.

And the corresponding spot diagram for the optimized optical system is the following,
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Fig. 47 Spot diagram for the optimized optical system.

All the rays fall inside the Airy disk which means that our optical system is diffraction limited and
the resolution corresponds to an Airy disk diameter of 6.458um.

Because we can’t be sure that the specimen we want to image will be on the optical axis, we will
also check for a source being off axis and see how the system deviates.

3.4.1.2 Source off axis by Imm

Moving the source by y=1mm off axis, we see that not all rays from the source can pass through

the optical system,
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Fig. 48 Layout for source at 1mm off axis.

And the corresponding spot diagram we get is,
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Fig. 49 Spot diagram for source at 1mm off axis.
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Which shows that the rays start to spread, extending beyond the Airy disk, and it seems to have
introduced coma aberration, because we are off axis. To confirm that this is mainly due to coma
aberration we tilt the imaging system, expecting in this case to fix the problem. So, we tilt the
imaging system by angle 6 equal to & = atan(y/z) , where y is the height of the source from the
optical axis (here 1mm off axis) and z is the distance pointed out in Fig.48. The tilting will be
performed around x axis such that all rays pass again from the imaging system. In the following
image all the axes are depicted and the part that was tilted is marked.

This part was tilted. ————
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Fig. 50 Layout for tilted imaging system.

And the corresponding spot diagram we get is,
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Fig. 51 Spot diagram for the tilted imaging system.

Which seems to still suffer from some kind of aberration but the spot has improved on shape
compared to that of Fig.49 and the RMS changes only slightly, when we perform tilting. Moreover,
the spot is no more diffraction limited.

3.4.1.3 Source off axis by 2mm

Moving the source by y=2mm off axis, we see that not all rays from the source can pass through
the optical system,
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Fig. 52 Layout for source at 2mm off axis.

And the corresponding spot diagram we get is,
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Fig. 53 Spot diagram for source at 2mm off axis.




Which shows that rays spread out again, this time more than those in Fig.47 and it seems to have
introduced coma aberration, because we are off axis. Again, the presence of coma aberration is
confirmed since by tilting the imaging system, the problem is practically fixed. So, we have to tilt
the imaging system by angle 6 equal to 8 = atan(y/z) , where y is the height of the source from
the optical axis (here 2mm off axis) and z is the distance pointed out in Fig.52. The tilting will be
performed around x axis such that all rays pass again from the imaging system. In the following
image all the axes are depicted and the part that was tilted is marked.

This part was tilted.
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Fig. 54 Layout for tilted imaging system.

And the corresponding spot diagram we get is,
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Fig. 55 Spot diagram for tilted imaging system.

Which seems to still suffer from some kind of aberration but the spot has improved on shape
compared to that of Fig.53 and the RMS changes only slightly, when we perform tilting. Moreover,
the spot is no more diffraction limited.

3.4.1.4 Source off axis by 3mm

Moving the source by y=3mm off axis, it is now clearer that not all rays from the source can pass
through the optical system,
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Fig. 56 Layout for source at 3mm off axis.

And the corresponding spot diagram we get is,
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Fig. 57 Spot diagram for source at 3mm off axis.
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Which shows us that the rays spread way too much around the Airy disk and it seems to have
introduced coma aberration, because we are off axis. Again, the presence of coma aberration is
confirmed since by tilting the imaging system, the problem is practically fixed. So, we have to tilt
the imaging system by angle 6 equal to 8 = atan(y/z) , where y is the height of the source from
the optical axis (here 3mm off axis) and z is the distance pointed out in Fig.56. The tilting will be
performed around x axis such that all rays pass again from the imaging system. In the following
image all the axes are depicted and the part that was tilted is marked.

This part was tilted. ————
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Fig. 58 Layout for tilted imaging system.

And the corresponding spot diagram we get is,
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Fig. 59 Spot diagram for tilted imaging system.

Which seems to still suffer from some kind of aberration but the spot has improved on shape
compared to that of Fig.57 and the RMS changes only slightly, when we perform tilting. Moreover,
the spot is no more diffraction limited.

3.4.1.5 Annotation

As we have seen that using confocal cavity composed of two plano-concave mirrors accompanied
with the imaging system presented in section 3.3, we manage to get a diffraction limited system,
when the source is located on the optical axis. If the source starts moving away from the optical
axis, some kind of aberrations start to appear (probably coma aberration), deforming the shape of
the spot the rays create at the exit and spreading them out of the Airy disk. Tilting the imaging
system, seems to improve the shape of the spot but the RMS radius of the rays does not show any
improvement. The greater the distance of the source from the optical axis, the bigger the deviations
appear to be. Last but not least, we would like to point out that the Airy disk diameter stays almost
the same no matter the height of the source nor the tilting of the optical system.
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3.4.2 Confocal Cavity composed of Zero-Lens Mirrors

Zero-lens mirrors are widely used to form optical cavities, because they do not produce much
spherical aberrations. The two spherical surfaces of the zero-lens mirrors are of the same radius of
curvature. In this section, we are going to use this kind of mirrors to check the performance of the
cavity combined with the existing imaging system.

3.4.2.1 Source on the optical axis

In this section we will check the performance of a confocal cavity comprised of two identical zero-
lens mirrors (Laseroptik - S-01090) which have radii of curvature R; = —R, = —100mm . This
means that each mirror must have a distance of 50mm from the center of the cavity where we will
place the specimen we want to image, as we can see in the next figure.
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Fig. 60 Layout of the confocal cavity combined with the imaging system.

From now on, all optimizations are performed for NA=0.12 and A=780nm.

We will now optimize the distance between the zero lens and the first element of the imaging
system using merit function, in order to minimize the spot of the image at the end of the system.
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The optimal distance we find is 30.22mm, as it is depicted bellow. The rest of the distances not
shown are the same as in Fig.42.
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Fig. 61 Optimized distance between the cavity and the imaging system.

And the corresponding spot diagram for the optimized optical system is the following,
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Fig. 62 Spot diagram for the optimized optical system.

As we can see, not all the rays fall inside the Airy disk which means that our optical system is not
diffraction limited. Spherical aberrations that zero lens introduces are stronger than those of the
plano-concave lens introduced in Fig. 47. Also, the resolution corresponds to an Airy disk diameter
of 8.127um while for the plano-concave arrangement was 6.458um in Fig.47, meaning that optical
system of Fig.61 has a worse resolution than the one in Fig.46.

In order to improve the spot size of Fig.62 we tried adding flat glass windows at the end of the
imaging system, as one can see in the following image.
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Fig. 63 Layout of the imaging system with an extra flat glass window added at the end.

And by introducing different thicknesses to the glass window, we observed how the spot size of
Fig.62 was affected. What we found, was that for increasing thickness, the spot size was getting
smaller until it reached to the diffraction limited case at some point.

Below, we have constructed a table showing the diameter D of the Airy disk and the RMS radius
for different thicknesses T.
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T(mm) D(um) | RMS(um)
0 8.127 3.254
1 8.127 3.201
3 8.127 3.093
5 8.127 2.986
6.3 8.127 2.916
10 8.127 2.718
15 8.127 2.449
20 8.127 2.18

Table 3 By changing thickness T of the flat glass window in Fig.63 we see that RMS radius of the
spot in Fig.62 decreases while Airy disk diameter D, stays the same.

We also plotted RMS radius as a function of thickness T using the data of Table 3.

RMS Radius (RMS) - Window Thickness (T)

3.4

RMS (pm)
[ [

0 2 4 6 8 10 12 14 16 18 20

T (mm)
y =-0.0537x% + 3.2544

Fig. 64 RMS radius as a function of thickness T of the flat glass window.

What we found is RMS radius has a linear dependence with the thickness T of the flat glass
window.
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We will now show some spot diagrams for different glass window thicknesses.
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Fig. 65 Spot diagram for 5mm flat glass window thickness.
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Fig. 66 Spot diagram for 10mm flat glass window thickness.
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Fig. 67 Spot diagram for 15mm flat glass window thickness.
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Fig. 68 Spot diagram for 20mm flat glass window thickness.
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As we can see, for increasing window thickness, our system tends to the diffraction limit and for
a window of 20mm thickness, we are already in the diffraction limited case.

3.4.2.2 Source off axis

As we saw in the previous section, by adding a flat glass window the system tends to the diffraction
limit. We now want to see, how the system behaves with the flat glass at the end when the source

is not located on the optical axis.

For glass window thickness of 3mm the on axis spot diagram is,
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Fig. 69 Spot diagram for 3mm flat glass window thickness and source on the optical axis.

Moving the source by 1, 2 and 3mm off axis the spots we get, appear in the following figures.
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Fig. 70 Spot diagram for 3mm flat glass window thickness and source 1mm off axis.
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Fig. 71 Spot diagram for 3mm flat glass window thickness and source 2mm off axis.
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Fig. 72 Spot diagram for 3mm flat glass window thickness and source 3mm off axis.

It is obvious that more aberrations are introduced, but they do not seem to be the same as those in
sections 3.4.1.(2-4). The rays seem to deviate in a same way both to the top and to the bottom.
These do not seem to be coma aberrations so no tilting was performed here. The higher the distance
of the source from the optical axis, the greater rays spread out of the Airy disk.
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Chapter 4 — Experimental Study

As we described in Chapter 2, cavities are characterized by specific resonant axial modes. In this
chapter we are going to check these resonant axial modes experimentally by presenting results of
experimental studies performed in the BEC lab.

4.1 Cavity Modes

The purpose of this experimental exercise is to construct an optical cavity and by aligning a laser
beam through the cavity to achieve resonance.

The experimental arrangement can be seen in the following image, followed by a brief explanation.

optical fiber
fiber clliatr

iphotodetector

tube cavity| o [Piezoelectric device

Fig. 73 Experimental arrangement.
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Laser beam (wavelength of roughly 780nm) enters the optical system through an optical fiber
(PM780-HP - 770-1100 nm Polarization-Maintaining Fiber, 5.3 um Mode Field Diameter) which
is attached to a fiber collimator (60FC-4-A8-07 - Focal lengths up to 20 mm). This system is
mounted in order to be able to steer the laser beam. What follows, is a mounted flat mirror (BB1-
EO3P - @1" Back Side Polished, Broadband Dielectric Mirror, 750 - 1100 nm) to reflect the beam
at a 90 degrees angle. Then, laser beam enters the cavity which is comprised of a tube with mirror
holders at the edges, roughly at 10cm distance between them. The attached mirrors are plano-
concave with focal length of 50mm (CM127-050-E03 - @1/2" Dielectric-Coated Concave Mirror,
750 - 1100 nm, f = 50 mm). In the front end of the cavity, there is also attached an iris so that
illumination is controlled, while in the back end of the cavity a piezoelectric (PZT) device is being
attached in order to be able and control the length of the cavity. In the end, when light comes out
of the cavity, it passes through a lens with focal length of 75mm, focusing the light in an amplified
photodetector. Both photodetector and the piezoelectric device were attached to an oscilloscope.

When a proper alignment was achieved, the piezoelectric device was used (triangular pulse -
frequency of 149.32 Hz) to make small changes to the length of the cavity and some resonance
was found. A photo from the oscilloscope follows, showing the resonant peaks (yellow lines) and
the triangular pulse (blue) infused in the piezoelectric device.
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Fig. 74 Photo from oscilloscope showing resonant peaks (yellow) and triangular pulse infused to
the oscilloscope (blue). Horizontal axis measures time while vertical voltage.

The piezoelectric device causes the mirror of the cavity to oscillate back and forth, changing the
cavity length. In between the red lines that we have drawn in Fig.74, we can see the resonances of
the cavity for one whole swipe for the mirror.

From Eq.(87) we know that the distance between two consecutive resonant peaks should be equal
to A/2. The wavelength used was 780nm, so the distance between two peaks in Fig.74 is equal to
d,=390 nm or d;=0.39 pum.

From piezoelectric’s device manual, we found that for every 1Volt, piezoelectric device displaces
the mirror by 1um. The peak to peak voltage of the blue pulse (from one red line to the other) in
Fig.74 is 16.8 V, meaning that for that period of time, the mirror was displaced by d,=1.68 um.
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Now, by dividing d, with d; we will find how many distances between two consecutive resonant
peaks d, , should exist between the red lines in Fig.74.

Division gives 4.3, rounded to the nearest integer we get 4. This means that we should see 4 whole
distances d; , or else we should be able to see 5 resonant peaks.

Of course, as one can see, between the two red lines in Fig.74, we can see 5 resonant peaks in
agreement with the analysis performed.
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Conclusions

In this thesis, we have theoretically studied the operation of cavities and based on our analysis we
have designed optical systems that involve the use of cavities, optimized to be used for imaging
applications.

We performed numerical simulations to understand and visualize how light rays propagate inside
optical cavities taking into account the stability of the cavity.

Based on the above we designed optical systems with integrated optical cavities. Our analysis
shows that these systems seem to be well-behaved as far as the on axis optical aberrations are
concerned. The first system we optimized, which contains a cavity comprised of plano-concave
mirrors combined with the imaging system we introduced, behaves very close to the diffraction
limit with minor spherical aberrations. On the other hand, the second one, composed of a cavity
with zero-lens mirrors combined with the imaging system, is characterized by spherical aberrations
which we eliminated by adding flat glass surfaces of different thicknesses at the back end of the
whole system. In the off-axis cases we clearly see that coma aberration appears for the first system
we checked. In the second system we see a more complex mixture of aberrations distorting the
spot symmetrically to the top and to the bottom. The more distant the source from the optical axis,
the greater these optical aberrations.

Moreover, we studied cavities experimentally and we observed the resonances inside a tube cavity
with the help of a piezoelectric device. The theoretical analysis we performed agrees with the
experimental observations, as we concluded in the fourth chapter.

Considering the work on this master thesis, the future of imaging using optical cavities is a
promising technique.
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