
E�cient Memory Management for high�speed ATM networks

Panagiotis Karakonstantisfkarakon�csi�forth�grg

Revision � ���

�



Contents

� Introduction �

� ATM system model and functionality �
��� Operation and applications of the model � � � � � � � � � � � � � � � � � � � � � � � ��
��� ATM system functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Segmentation and Reassembly �SAR� � � � � � � � � � � � � � � � � � � � � ��
����� Rate�based �ow control � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����	 Credit�based �ow control � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
����
 Selective Discard � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


� Queue Management Architecture ��
	�� De�nition of the basic data structures � � � � � � � � � � � � � � � � � � � � � � � � ��
	�� Design Tradeos � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Hardware Implementation ��

�� The MuQPro I implementation � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


���� Interface � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

���� Instruction set � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���	 Internal Architecture � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���
 SRAM and Master Device requirements � � � � � � � � � � � � � � � � � � � ��

���� Merging two instances of QM together � � � � � � � � � � � � � � � � � � � � ��

���� The instruction is enqueue� dequeue� top or init �case A� � � � � � � � � � � 	�

���� The instruction is retfree �case B� � � � � � � � � � � � � � � � � � � � � � � 	�

���� The instruction is getfree� read or write �case C� � � � � � � � � � � � � � � 	�

���� Testing � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

����� Cost and performance � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 		


�� The �fully scalable� implementation � � � � � � � � � � � � � � � � � � � � � � � � � 		

�	 The �fully parallel� implementation � � � � � � � � � � � � � � � � � � � � � � � � � 		

� Software implementation of Queue Management ��
��� Programming environment � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
��� The EnQ operation with canonical input � � � � � � � � � � � � � � � � � � � � � � � 	�
��	 Mixed EnQ�DeQ operations with canonical input � � � � � � � � � � � � � � � � � � 	�
��
 The EnQ operation with random input � � � � � � � � � � � � � � � � � � � � � � � � 	�
��� The SAR model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

����� The packet processing routine � � � � � � � � � � � � � � � � � � � � � � � � � 	�
����� The iterative process � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�
����	 The parameters � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�
����
 Measurements � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�
����� Analysis � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

� Comparisons ��

A Functionality and timing diagrams for each instruction ��
A�� The enqueue instruction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�
A�� The dequeue instruction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A�	 The getfree instruction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
A�
 The retfree instruction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�



A�� Initialization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
A�� Read instruction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
A�� Write instruction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
A�� Top instruction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
A�� CreateQ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
A��� DeleteQ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

B Datapath of MUQPRO I QM module �	

C The 
fully scalable
 implementation datapath ��

D The 
fully scalable
 implementation control path ��

E The 
fully parallel
 implementation data and control path ��

	



List of Figures

� OSI layered architecture and AAL�� and ATM processing � � � � � � � � � � � � � �
� ATM system model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
	 Using FIFOs to implement Credit�based �ow control � � � � � � � � � � � � � � � � �


 Using FIFOs to implement Selective Discard � � � � � � � � � � � � � � � � � � � � ��
� Queue Manager�s generic architecture � � � � � � � � � � � � � � � � � � � � � � � � ��
� Queue Manager�s basic data structures � � � � � � � � � � � � � � � � � � � � � � � � ��
� MUQPRO I system architecture � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
� Queue Manager block diagram � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Queue Manager pseudo�pipeline � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� Queue Manager block diagram � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� Issuing instructions right after an enqueue or dequeue instruction � � � � � � � � � ��
�� Issuing instructions right after a getfree or retfree instruction � � � � � � � � � � � ��
�	 Making � sets of queues � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
�
 Arbiter �nite state machine � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
�� Enqueue serial operations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
�� Mixed serial operations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
�� Random Enqueue operations with 
th level optimization � � � � � � � � � � � � � � 	�
�� The SAR model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�
�� Measurements for � and �� cell packets � � � � � � � � � � � � � � � � � � � � � � � � 
�
�� Measurements for �� and ��� cell packets � � � � � � � � � � � � � � � � � � � � � � 
	
�� Measurements for ��� and 
�� cell packets � � � � � � � � � � � � � � � � � � � � � � 
	
�� Measurements for ��� and ���� cell packets � � � � � � � � � � � � � � � � � � � � � 
	
�	 Measurements for ������ cell packets and ULTRA measurements for � cell packets 


�
 Issuing instructions right after an enqueue or dequeue instruction � � � � � � � � � 
�
�� Issuing instructions right after a getfree or retfree instruction � � � � � � � � � � � ��
�� Schedule for the EnQ command � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� Initial state of the queues� enqueue slot � in queue �� enqueue slot � in queue � � ��
�� Enqueue instruction on a non�empty queue � � � � � � � � � � � � � � � � � � � � � ��
�� Enqueue instruction on an empty queue � � � � � � � � � � � � � � � � � � � � � � � �	
	� Initial state of the queues� dequeue from queue �� dequeue from queue � � � � � � ��
	� Schedule for the DeQ instruction � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
	� Dequeue instruction on an empty queue � � � � � � � � � � � � � � � � � � � � � � � ��
		 Dequeue instruction on a queue with exactly one element � � � � � � � � � � � � � ��
	
 Dequeue instruction on a queue with more than one elements � � � � � � � � � � � ��
	� Initial state of the queues� getfree� getfree � � � � � � � � � � � � � � � � � � � � � � ��
	� Schedule for the GetFree instruction � � � � � � � � � � � � � � � � � � � � � � � � � ��
	� GetFree instruction on an empty queue � � � � � � � � � � � � � � � � � � � � � � � ��
	� GetFree instruction on a queue with exactly one element � � � � � � � � � � � � � � ��
	� GetFree instruction on a queue with more than one elements � � � � � � � � � � � �	

� Initial state of the queues� retfree slot � retfree slot � � � � � � � � � � � � � � � � � �	

� Schedule for the RetFree command � � � � � � � � � � � � � � � � � � � � � � � � � � �


� Retfree instruction on a non�empty queue � � � � � � � � � � � � � � � � � � � � � � �


	 Retfree instruction on an empty queue � � � � � � � � � � � � � � � � � � � � � � � � ��


 Initialization example for 
 queues and � slots � � � � � � � � � � � � � � � � � � � � ��

� Timing diagram I of Init instruction � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Timing diagram II of Init instruction � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Timing diagram III of Init instruction � � � � � � � � � � � � � � � � � � � � � � � � ��







� Timing diagram of Read instruction � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Timing diagram of Write instruction � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� Timing diagram of Top instruction � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�� The Datapath that implements these operations � � � � � � � � � � � � � � � � � � ��
�� The Datapath of the �fully scalable� implementation � � � � � � � � � � � � � � � � ��
�	 Schedule for the EnQ command � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	
�
 Schedule for the GetFree command � � � � � � � � � � � � � � � � � � � � � � � � � � �	
�� Schedule for the DeQ command � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� Schedule for the RetFree command � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� The Datapath of the �fully parallel� implementation � � � � � � � � � � � � � � � � ��
�� The FSM of the �fully parallel� implementation � � � � � � � � � � � � � � � � � � � ��

�



Abstract

Asynchronous Transfer Mode �ATM� is a connection�oriented networking technology that sup�
ports transfer of data� video and voice� The ability to multiplex a large number of connections
over a single physical link places high requirements for processing and memory management in
ATM systems� The problem becomes more acute as ATM systems scale to both higher speeds
and increased number of links� In this work� we analyze the memory management require�
ments imposed by the main ATM functions �segmentation and reassembly� �ow control and
selective discard� and identify a core set of operations whose fast execution leads to e�cient
memory subsystems for generic ATM systems �switches or adapters�� We propose hardware ar�
chitectures that implement this set of operations as well as a software implementation suitable
for embedded systems� Finally� we present performance and cost measurements of the vari�
ous implementations so that one can choose the implementation most suitable for one�s target
system�

�



� Introduction

Asynchronous Transfer Mode �ATM� is a connection�oriented� cell�based networking technology
that supports transfer of data� video and voice� Many virtual connections that specify paths
between source and destination network nodes may pass over the same physical link� On the
other hand ATM scales to very high speeds resulting in strict timing requirements in protocol
processing and buering� The problem becomes more acute as the number of physical links
increases� Furthermore� this relatively new technology oers per connection Quality of Service
�QoS� which means �xed delay for cell delivery and pre�de�ned Cell Loss Probability �CLP�
as have been agreed between the network manager and the client �user�� All these constraints
compel ATM systems to incorporate buers�
Buering in ATM has a special structure imposed by its operations� Cells are associated

in some way forming logical queues� This association results either from structural relations
�e�g cells that belong to the same packet� or from similar operational requirements �e�g� cells
heading for the same resource� and requires many separate logical queues�
All ATM systems can be modeled in a simple way without loosing any important information�

Such a model can depict both adapter and switch nodes and shows the similarities between the
seemingly dierent network components� In this model the signaling and higher�level protocol
processing is executed by a Processing Element �PE� while the lower level protocols are executed
by a Network I�F component in hardware� Cells are transfered between the PE and the Network
I�F�s� and form logical queues inside the buers� Buering in such a model can be separated
from the protocol processing �hardware or software� and form a distinct unit� This separation
is not only for presentation purposes but it also enables parallelism between buering and
processing� Buering can be further divided into � parts� one plain memory �CBM� where all
the cells physically reside� and a Memory Management Unit �MMU� that creates� extents and
destroys queues by using pointers to the physical locations of the cells� This approach is scalable
because operations on queues can occur without actually interfering with the cell bodies� This
model though simple depicts most commercial ATM systems with fair accuracy�
In order to show that functionally queues are su�cient for serving ATM functions� we study

a core set of ATM functions that exist in any system� These are Segmentation and Reassembly
where cells belonging to the same connection form packets� �ow control where cells form queues
depending on the available buer space at the downstream switch node and the destination
node� and Selective Discard which is responsible for freeing buer space by dropping low priority
queues of cells when buer space has reached a certain threshold�
Taking into account all the requirements we propose a Queue Management �QM� archi�

tecture where the QM is a slave synchronous device that accepts a minimal set of instructions
�Enqueue� Dequeue� GetFree� RetFree� Read� Write Top� and handles queues through the use of
pointers� The basic data structures required for implementing queues is a Head�Tail table with
one Head�Tail entry for each provided queue� Empty Bits for determining if one queue is empty
or not and one pointer �eld for each buer �e�g� cell buer�� There are many tradeos regarding
the placement of these data structures into on�chip or o�chip memories� multiple memories or a
single one and connection number to queue number translation� that are extensively discussed�
We present 	 dierent hardware implementations regarding the tradeos� one that is incor�

porated in a prototype ATM system �MUQPRO I� capable of serving � ��� Mb�s links the
processor and the output scheduler� another that fully utilizes its memory ��fully parallel���
and a last one that exhibits the maximum possible parallelism that exists in Queue Man�
agement ��fully parallel��� All implementations have as target technology conservative Field
Programmable Gate Arrays �FPGAs� and achieve speed between �� and 	� MHz requiring one
FPGA and an external dedicated SRAM chip� Finally we present a software implementation of

�



Queue Management suitable for embedded systems and measure its performance in conjunction
with the hardware implementations considering the scalability in both higher cell rates and
number of queues and the relative cost�
In section � we present the ATM system�s model in some detail together with the functional

requirements of ATM� Section 	 de�nes the architecture of Queue Management together with the
exploited tradeos� while sections 
 and � describe the hardware and software implementations�
Finally we compare the dierent architectures and emphasize on their strong and weak points
in section � aiding one to select the most suitable solution for his needs� The appendices A and
B describe the instruction set and the timing of the MUQPRO I Queue manager together with
the datapath in detail� Appendices C� D and E have diagrams regarding the �fully scalable�
and �fully parallel� implementations�

�



� ATM system model and functionality

LLC

Physical Layer

Higher Level Protocols

(AAL-5)

ATM Adaptation Layer type 5

SAR

CPCS

ATM Layer

�a�

LLC

header

LLC-encapsulated packet

AAL-5 processing

Padding Trailer

LengthUU CPI CRC-32

..........

H
ea

de
r

cell

48-octet

H
ea

de
r

cell

48-octet

Physical layer

Bits

GFC VP VC PT CLP HEC

Higher level PDU

�b�

Figure �� OSI layered architecture and AAL�� and ATM processing

ATM technology is a cell�based switching technology developed to carry data� video and
voice tra�c� The basic unit of transfer in ATM is a �xed�size cell and many of them are
connected together to make up larger packets as shown in Figure �a� It covers part of the data
link and physical layers in the OSI protocol stack as shown in Figure �b� The ATM protocol
stack is divided into two parts� the Adaptation Layer and the ATM Layer� The adaptation layer
is responsible to transform appropriate level PDU�s to �xed�size cells and to reassemble packets
from received cells� There exist various types �� overall� of adaptation layers� each appropriate
for a dierent type of tra�c �real�time or non�real�time video� audio and data�� In this work�
we focus on Adaptation Layer � �AAL���� which is the most popular one and which is used not
only for data but for delivery of compressed video �MPEG� as well �as de�ned by ATM Forum
standards��
An ATM network is an interconnection of nodes that are either switches or end�system

adapters �users�� Switches are systems that route ATM cells appropriately in the network�
End�system adapters are the network�s end�points which collect the cells directed to them� re�
assemble them to construct the original packets� and deliver the packets to higher layer protocols�
Although seemingly dierent� switches and adapters have many similarities in structure and low
level operations� A typical ATM system �switching node or adapter �user node�� consists of a
Processing Element �PE� which executes signaling and�or higher layer protocols� memory to
store cells �and possibly packets in case of end�system adapters� as well as a number of network
and system interfaces� depending on the structure of the system� A typical adapter� which can
be used either as an end�system �or communication system� adapter or as a link attachment of
a switch is shown in Figure ��
This adapter architecture that has been introduced in ���� addresses the requirements of

high�speed networks with variable�sized packets� The same structure can be used for ATM
systems transferring �xed�sized cells as has been presented in ���� The adapter establishes and
manages logical queues of cells �and packets if necessary� where each logical queue represents a
collection of logically associated cells� This association can be either structural �e�g� cells of the
same packet� or operational �e�g� cells heading for the same resource of the adapter� like the
PE or the Network I�F� and dierentiates the buering in such systems from simply placing

�



MP

I/O BUS

PE

Cell
Memory

MMU

MP

System BUS

System I/F

Network I/F

Physical Links
bits <--> cells

PHY0 (PHY1 PHYn)

....

Figure �� ATM system model

data in a Random Access Memory in contiguous addresses�
One of the most important operations in ATM systems is buering of cells �and packets� in

the case of network endpoints�� Buering in switching is required for temporary storage of cells
when con�icts occur for cells that need to exit from the same output link� in adapters� cells of
the same connection are assembled together to reconstruct the original packets� Furthermore�
buering is necessary due to the adoption of mechanisms that provide Quality of Service and
consequently require smoothing of tra�c �ows with pre�de�ned delay and Cell Loss Probability
�CLP�� The structure and implementation of the buer in network systems is critical to their
performance as has been shown in ���� ���� and ����� The problem becomes more acute as the
SONET hierarchy scales to higher rates for each Network I�F link and the industry tries to �t as
many links as possible in one integrated circuit� For example� the cell time � the minimum time
between two successive cell arrivals over the same Network I�F � ranges from ��� �s for SONET
OC�	 ���� Mb�s� links to ���� �s for SONET OC��� ���� Mb�s�� ��	
 �s for SONET OC��

����

 Gb�s� and only ���� �s for SONET OC�
� ���
� Gb�s� links� The total number of links
in typical commercial switches today is �� �as shown in ����� with potential growth as ATM
moves to the WANs resulting in system cell time of ����

�� � ����s which is not implementable
today for commercial purposes�
Thus scalability is a key element in current and future ATM buer implementations and it is

the focus of our work that de�nes the internal structure of buer subsystems to be incorporated
in high�performance ATM systems�

��� Operation and applications of the model

The system�s model presented in �gure � depicts in detail the operation of current ATM systems
and we will describe how this occurs �rst for switches and latter for adapters� As mentioned
earlier the linking of cells associated in some way is performed through logical queues �or simply
queues� implemented in the MMU� The main characteristic that associates cells� is their con�
nection number that describes a virtual path between source and destination� The connection
number �VPI�VCI� determines the resource to which cells are heading for and certain VPI�VCIs
are reserved for transferring high�priority management information �OAM cells� regarding sig�
naling ATM functions �e�g� connection setup� join of a new node to a multicast group etc� as
de�ned in ����� All network management protocols are executed by the Processing Element

��



�PE��
For each incoming �through the Network I�F� cell a decision has to be taken depending on

its connection number� If it is a management cell �OAM cell� heading for the PE with high
priority then it has to be stored in a queue dedicated to this� Otherwise it has to be stored in a
proper queue together with other cells that belong to the same connection waiting for a speci�c
Network I�F to become available� Cut�through can be also considered by directly transferring
incoming cells from one Network I�F to another�
At last cells may be placed in queues with dierent priorities controlled by the PE and

specifying the Quality of Service� For example some queues may be dedicated to high priority
Constant Bit Rate �CBR� tra�c with �xed delay and CLP while some others may be only for
Available Bit Rate �ABR� tra�c that does not provide any guarantees but it takes up what is
left from the other tra�c types� Furthermore� the PE generates cells �common and OAM� to
depart through the Network I�Fs placing them in proper queues to wait and alters �translates�
the connection number of the incoming cell �ows as speci�ed by the signaling or routing protocol
that the PE executes�
In this model the bodies of the cells physically reside in CBM while the construction of

the queues is separately executed by the MMU module that has its own memory and logic�
This is accomplished by letting the MMU manipulate pointers to cells instead of the cell bodies
themselves� Therefore� multiple copies for transfers between the various system components
is avoided and queues can be easily created and destroyed without interfering explicitly with
the cells and the packets� The more the Network I�F attached to the system the more critical
becomes the speed of the MMU� Other than the MMU approach place buering in the PE
with some elastic buers at the Network I�F or the opposite� The main disadvantage of this
approach is that it is optimized for a speci�c system and does not allow parallelism between
the buering and the operations executed by the other components � at least at the conceptual
level�
The procedure described above applies to adapters as well� If we put away all the Network

I�Fs but one our model is transformed into a network adapter model� The routing decisions
we had for the switch nodes are replaced by the Segmentation and Reassembly function in the
adapter nodes� ATM cells that were grouped in the case of switches on per output Network
I�F basis must now be grouped on per connection basis in order for SAR to take place� We can
now see the similarity between the two systems� In the switch nodes a cell�s connection num�
ber �VPI�VCI� determines the destination while in the adapter nodes the connection number
determines where to place it� In both cases the VPI�VCI determines where to transfer the cell
and this may be an outgoing Network I�F� the PE or a speci�c buer in MMU�
The model presented so far though simple represents most of the commercial ATM systems

with good accuracy and it has the advantage of depicting possible hardware�software inballances�
Commercial systems like ���� and ���� can easily be modeled in this way� The SUN ATM����s
SAR chip implements the physical� ATM and SAR layers in hardware� It incorporates three
interfaces to physical layer �Utopia�� host processor �SBus�� transmit and receive memory� The
communication between the host processor and the chip can be in the packet level i�e� exchange
of SAR layer PDUs between host processor and SAR chip� Therefore higher that SAR level
protocols are executed at the host processor while the lower level ones are carried out by the
chip itself� Buering is completely managed by hardware in order for the chip to be able to keep
up with the ��� Mbps incoming and outgoing rate� The FORE ASX���� ATM switch is among
the most popular switches in the ATM market� It has �� �� Mbps and 
 ��� Mbps ports and
implements sophisticated buering per connection in hardware� Other chip sets like the NEC
SAR chips implement SAR with a combination of hardware and software� The host processor
provides to the chip a portion of its memory which is managed by the chip to store cells and

��



perform SAR while the extra memory needed for control is on�chip�

��� ATM system functions

Through the simpli�ed model described above we have exhibited the need for buering architec�
tures that in general handle queues� However a more thorough study of the functions oered by
ATM is required together with how they can be supported by using queues� The basic functions
executed by ATM are Segmentation and Reassembly �SAR� which collects cells that belong to
the same connection and forms a higher level PDU� Credit and Rate based �ow control which
safes the network from data �ooding from certain bursty connections and Selective Discard
that provides a mechanism for selecting cells to drop when all buers are full or exceed some
threshold� All these functions are implemented inside the AAL�� layer and are analyzed in
subsequent subsections�

����� Segmentation and Reassembly �SAR

The AAL�� layer is divided into two parts� The Convergence Sublayer �CS� and the Segmen�
tation and Reassembly Sublayer �SAR�� The �rst part performs message identi�cation and
time�clock recovery and is not discussed in this text� while the second one is responsible for
the segmentation of LLC encapsulated PDUs into 
��byte cells at the transmit side and the
reconstruction of cells to make up an LLC encapsulated PDU at the receive side� In more detail
AAL�� performs the following on transmit side �the inverse occurs on the receive side� as is
displayed in �gure ��

�� Add as much padding as it is needed in order for the incoming PDU to become multiple
of 
� bytes�

�� Add an ��byte trailer to the �packet� emerged from the previous step as de�ned in �����

	� Segment the resulting packet into 
��byte cells and forward them to the ATM layer�


� In each 
��byte cell add a � byte header to transform it into a �	�byte ATM cell�

This process is known as Segmentation and Reassembly �SAR� and buering is required to
perform this function on per connection basis� In order to have per connection buering and
considering the connection�oriented nature of AAL��� one FIFO queue per active connection is
required� The fact that we have to maintain queues only for the active connections reduces the
total number of queues that must be provided by the buering subsystem but it still remains
unknown and it is a crucial parameter� An implicit requirement n SAR is high utilization of
the existing buers� this can be accomplished by implementing all the queues in shared buer
space� Implementation in shared buer space has another advantage� Each queue can consume
a user�controlled portion of the total memory� The SAR function reconstructs AAL�� PDUs and
the higher level layers �e�g� LLC� are responsible for fetching them for further processing and
delivery� However the buering subsystem can aid the upper layers by constructing� apart from
AAL�� PDUs� higher level PDUs� This can be achieved through the provision of mechanisms
for construction of queues of queues i�e� each higher level queue has as elements queues of ATM
cells and each one of them constitutes an AAL�� PDU�

����� Rate�based �ow control

Rate�based �ow control is the standard end�to�end congestion control mechanism adopted by the
ATM Forum� When a connection�s buer exceeds a certain threshold value a special Resource

��



Management �RM� cell has to be sent back and notify the source to decrease its Allowed Cell
Rate �ACR� according to some function� Another way of implementing this mechanism is to
force the source to decrease it�s ACR as long as it does not receive a special RM cell that
noti�es continuation at the same ACR� This mechanism works well under certain conditions
but not under any conditions� Rate�based �ow control does not impose any extra constraints
in comparison with Credit�based �ow control and thus we will only refer to Credit�based �ow
control from now on� More information on Rate�based �ow control can be found in ��� and ����

����� Credit�based �ow control

Credit�based �ow control is a mechanism that ensures fairness between dierent tra�c �ows
and generally applies congestion control in a hop�by�hop fashion in switches� The upstream
switch transmits only when it knows that there exists free buer space at the downstream
switch �receiver�� For the upstream switch to know when there is free space� a credit counter
is required and a coding scheme for the credits� The credit counter of the upstream switch
counts free space of the downstream switch� The downstream switch sends tokens or credits
whenever buer space is freed i�e� when a cell leaves this switch� When the upstream switch
receives a credit it increments the counter and when it sends a cell it decrements the counter�
This simple scheme is a single lane �ow control mechanism� It�s main problem is in the case
that one connection is very congested and consumes all available buer space leading the other
connections even if there is available network bandwidth in starvation� This situation is very
similar to head�of�line blocking�
More advanced schemes have been proposed to deal with this issue� One of the most in�

teresting is multi�lane Credit�based �ow control where buer space is partitioned into small
segments one for each virtual connection and it is guaranteed that each connection will always
have a minimum buer space at the downstream switch� In this way no connection can be
blocked by others� An optimization of this approach exists where the partitions are not as
many as the connections but only as many as the dierent �ows i�e� source � destination pairs
that follow the same route in the network� In this implementation we have two types of credits�
one type that tells us whether there exists free space at the downstream switch and another
that tells us whether the �ow group has free space at the downstream switch� More detailed
description of credit�based �ow control can be found in ��� and ���� Adapters use credit�based
�ow control as well but only on the side connected to the switch� for �ow control termination
purposes� Credit�based �ow control is a very e�cient mechanism for congestion control and
is also challenging by means of implementation complexity� It can be implemented at various
levels� It can be encoded at the physical layer frames� or carried over ATM cells� In either case
buering plays an important role in distinguishing between dierent buer spaces occupied by
dierent connections and thus providing the necessary primitives to assign to each connection
a fair amount of bandwidth and buer space�
For example consider a ��level credit scheme where the �rst type of credit is given when

there is buer space available at the destination node �destination credit� and the second type
of credit is given when there exists free buer space at the downstream switch �pool credit��
Cells that belong to the same connection in this �ow control scheme belong also to one of 

categories�

�� Cells that have no credit

�� Cells that have destination credit

	� Cells that have pool credit

�	



VP/VC
1

Ck credit
? Y

N

pool
credit

?dst

ReadyQ

LessQ

V
P

/V
C

 x

V
P

/V
C

 y

N PoolQ

V
P

/V
C

 zY

C0

C1 C1

C0

VP/VC 1

Cm

VP/VC 2PnP0
P0 Pn
C0 C0

C1 C1

CjCi

Figure 	� Using FIFOs to implement Credit�based �ow control


� Cells that have both credits

resulting in 
 queues per connection� A more clever scheme depicted in �gure 	 can be imple�
mented with only 	 queues hierarchically placed� Initially incoming cells are trying to fetch a
destination and a pool credit� If they manage to take both they are enqueued in the Ready
Queue and if they manage to take a Destination credit they are enqueued in Pool Queue� Other�
wise they are enqueued in the Creditless Queue pending for both credits� Pool credits are given
only to cells from the Pool Queue or cells that already have a Destination credit in general�

����� Selective Discard

This is a secondary mechanism that does not naturally exists in ATM systems� concerns very
congested networks and has been proposed by ��� and implemented by companies like FORE
and CISCO� However large buer space we provide there may be times that bursty network
tra�c over�ows the buers and forces the system to drop cells� Instead of dropping the new
incoming cells that may have a higher priority than others or generally belong to CBR or VBR
tra�c it is more appropriate to drop cells from a buer assigned to a congested connection
that carries lower priority tra�c or ABR tra�c� In this way we maintain quality of service by
cutting down the ABR tra�c when it is necessary� Buering then needs to provide mechanisms
for dropping selected uncompleted AAL�� PDUs� In other words the buering subsystem must
provide a mechanism to free a whole queue when explicitly ordered as shown in �gure 
�
Another approach is EPD �Early Packet Discard� where complete AAL�� PDUs are dropped

in case of congestion on the �y� In other words when is being decided that one connection has
reached a certain threshold or it is of low priority then all incoming cells are being dropped
until a complete AAL�� frame is thrown away� EPD does not require any special support by
the buering architecture� More information on EPD can be found in �����

�




Ck
1

VP/VC
? free
buffer

Y

N decision
Flow control

store celldrop cell"dropped"
VP/VC 1

P0

C1

C0
P1 P0 P1

C0

C1

Cm

C0

C1

Ck Cj

C1

C0

VP/VC 2

Free
List

Figure 
� Using FIFOs to implement Selective Discard

��



� Queue Management Architecture

So far we have regarded the buering subsystem as a black box that handles addresses to
buers constructing queues of cells that physically reside in CBM� From now on we will refer
to this system as Multi�Queue Manager or simply Queue Manager �QM�� The Queue Manager
whose functionality has been de�ned in section �� can be regarded as a custom processor that
inputs instructions speci�c to queues and replies� This master�slave approach �QM is the
slave�� as presented in �gure �� has been considered as the most suitable because it simpli�es
the interaction between the external master device and QM and provides a general�purpose
interface that can be incorporated in any ATM system�

Queue Manager

MEMORY Logic

Opcode Instruction Arguments Return Data Empty/NonEmpty

Figure �� Queue Manager�s generic architecture

The core instruction set that covers all the required functionality follows�

Init�arg��arg��arg��arg�� It sets the address space each of the required data structures
�Head�Tail table� Pointer Memory� takes up� The Head�Tail table structure starts at
address arg� and uses arg� words and Pointer Memory structure starts at address arg	
and uses arg
 words� In addition the initialization procedure starts by �lling the Free List
and setting all queues to empty�

EnQ�arg��arg�� Enqueue at arg� queue the address speci�ed by arg�� Answer if the queue
was empty before issuing this instruction�

DeQ�arg�� Dequeue an element from queue arg�� Answer with the address of the dequeued
element and if queue arg� has become empty after the completion of this instruction�

Top�arg�� Return the top element of the queue arg�� No changes in arg� queue occur� In
addition reply if the queue is empty or not� This instruction plays the role of both a
�Top� instruction and a �IsEmptyQ� instruction�

GetFree�� Returns an address from the List of Free Addresses �Free List� to be used to store
a cell� A reply is also returned whether the Free List became empty after this instruction
or not�

RetFree�arg�� Returns arg� address to the Free List� In other words the buer pointed by
arg� is not used anymore and with this instruction it becomes available for use� A reply
is also returned whether the Free List was empty before issuing this instruction or not�

��



Read�arg�� It simply reads a word from address arg� of the internal to the QM memory�
This instruction is used only for debugging purposes�

Write�arg��arg�� Writes arg� at address arg�� This instruction is only used for debugging
purposes�

The instruction set described above de�nes apart from the operational core� instructions that
aid in the debugging process which is one of the most time consuming tasks in the digital design
�ow� These are the Read�Write instructions that can read and write arbitrary addresses in the
Queue Manager�s memory space and the Top instruction that returns the top queue element
of any queue without altering its state� All instructions can be encoded in 	 bits resulting in a
small and compact �no bits remain unused� opcode that can be decoded fast and scales easily
in high�speed systems�
In many applications it is required to have one queue per VPI�VCI but this is not possible

because the number of all possible connections is way too large� the VPI�VCI �eld is �
 bits
for UNI resulting in ��� possible connections� Furthermore� the provision of ��� queues even
if it was technologically feasible it would be a waste of space considering that the number of
active connections in a typical ATM system is a much smaller number �the network is always
designed in a way that it never exhausts all its resources�� Consequently some support must be
added to map all the possible connections to a smaller set of provided queues� There are many
dierent approaches for mapping or translation from a connection number to a queue number�

�� Use of a Content Addressable Memory �CAM� for full translation of VPI�VCIs into ex�
isting queue numbers� This solution provides full mapping of the VPI�VCI to a number
of queues determined by the size of the CAM�

�� Use of a DRAM addressed by the VPI�VCI� This solution also provides full mapping of
VPI�VCI to a number of queues determined by the size of the DRAM�

	� Explicitly use some of the VPI�VCI bits as the queue number� The use of only a �xed
number of bits from the VPI�VCI as the queue number results in many connections
mapped to the same queue number� The problem can only be reduced �but not eliminated�
through the proper assignment of VPI�VCIs by the network manager� The number of
queues is a parameter of the system�


� Use a �xed number of bits from the VPI and the VCI and let the user dynamically de�ne
which ones� This solution is the most common in commercial systems and allows the
network manager to use its own policy in VPI�VCI assignment at connection setup� The
number of queues is a parameter of the system together with the level of �exibility on
which groups of bits to select�

�� Map the VPI�VCIs into queue numbers through some well�de�ned hash function �e�g�
CRC����� Obviously the number of queues is determined by the properties of the hash
function so as to have few collisions during the VPI�VCI mapping to queue numbers�

Each solution has its advantages and disadvantages with the �rst one being the most ex�
pensive fast and �exible� the second one being fair for translating all the VPI�VCI bits with
a reasonable delay� the third one being the most simple� suering from collisions� the fourth
one being the one used in most commercial systems with a fair cost�performance ratio� and the
fourth one being a low cost but highly depending� on the VPI�VCI assignment and the hash
function� solution�

��



Writing down the main characteristics of the architecture we end up with a structure that
has multiple hierarchical queues implemented in a shared buer space� Two are the main
parameters of these queues� The number of queues and the number of buers that can enter
the queues� These two parameters cannot be determined because they depend greatly on the
network tra�c and therefore a hardware implementation that is scalable by means of these two
parameters would provide a cost�performance ratio to be decided by the network administrator�
The data structures that implement this architecture follow in section 	���

��� De�nition of the basic data structures

To understand better what stated above lets see the optimal implementation of FIFO queues
in shared buer space as has been originally introduced in ���� We de�ne as cell bu�er the
memory space required to store one ATM cell i�e� �	 bytes� In order to be able to access one
cell buer�CB� and link many of them in chains one pointer per cell buer is required� called cell
pointer�CP�� The memory that holds the CBs is the Cell Bu�er Memory�CBM� while the one
that holds all the CPs is named Pointer Memory�PM�� In addition the minimum requirement
for implementing one FIFO queue is two pointers� one pointing at the head and one pointing
at the tail of each queue called Head�Tail table� plus one bit that identi�es the state of the
queue i�e� whether the queue is empty or not� called Head�Tail empty bit� The data structures
presented so far are capable of linking and creating FIFO queues of CBs� However� we can�t
distinguish between empty CBs and CBs attached to a speci�c queue� For this reason a Free
List is required and can be maintained with constant memory� A Free List head and a Free List
tail register plus a Free List empty bit� How can this be achieved� If we link all CBs at start
up sequentially �CB � points at CB � which points at CB � etc� and make the Free List head
register point at � and the Free List tail register point at Nc � � where Nc is the total number
of CBs then we have an optimal Free List implementation� In addition we must be careful to
set the Free List empty bit to �� All mentioned data structures are presented in �gure ��

FLempty

FLtail

FLhead

11

Head
Tail

16 424
CBM

16
PMHead/Tail table

N
um

be
r 

of
 Q

ue
ue

s

N
um

be
r 

of
 C

el
l B

uf
fe

rs

1
EoP

He
ad

/T
ai

l  
em

pt
y 

bi
ts

HT
r

Figure �� Queue Manager�s basic data structures

The equation that gives us the total memory used by all structures in bits as a function of
the number of provided queues �Nq� and the number of cells �Nc� follows�

Sall � SCBM � SPM � SHTm � SHTe � SFLm �


�
Nc �Nc�log�Nc � �� � ��log�Nc � ��Nq

�Nq � ��log�Nc � �� � �

��



SCBM is the total memory used by the buers that keep the cells and have size of 
�
Nc in
bits� Pointer Memory must have width equal to the bits required for addressing all CBs �i�e�
log�Nc � �� and height equal to the number of buers �Nc�� Head�Tail table has height equal
to the number of supported queues �Nq� times � �head and tail� and width equal to the bits
required for addressing all CBs� The Empty Bits are as many as Nq and the Free List Head�Tail
registers require log�Nc�� bits each� In addition the Free List Empty bit is required� By using
this formula we can easily compute the amount of memory used for the pointers and compare it
with the one used for storing the data �CBM�� Some indicative numbers for reasonable memory
con�gurations are in the following table�

Nc ���
 
��� ���� 	���� �	����

Nq ��� ��� ���
 
��� ��	�

Sall�SCBM

Sall
	� 
� 
� �� ����

��� Design Tradeo�s

There are many tradeos to be considered regarding placement of the de�ned data structures
in memory�

�� On�chip or o�chip placement of required data structures� The �rst oers speed but
provides no �exibility and has little scalability in size� It is much easier and costs less to
take o a memory chip and hook up a larger one in size instead of producing a new ASIC
in an improved technology that has more on�chip memory�

�� Many separate memories for the data structures enable parallelism but the cost is too
high� For example if all the required data structures are placed in a double width memory
where the Head� Tail and Empty Bit �t in one word then the execution time of an Enqueue
operation is � cycles in comparison with the 
 cycles in a one single�width memory imple�
mentation as we will see in section 
� Thus the placement of the Head� Tail and Empty
Bits plays an important role in cost and speed even when we choose a single memory�
There are two choices regarding the Head�Tail placement�

�a� The Head�Tail table is placed in the memory with the Head and the Tail being in
one memory word�

�b� The Head�Tail table is placed in the memory as shown in �gure � with the Head and
the Tail in contiguous memory words�

and two choices regarding Empty Bits placement�

�a� The Empty Bits are stored in a separate memory space utilizing the existing memory
�����

�b� The Empty Bits are encoded inside the Head� the Tail or in both exploiting paral�
lelism and accelerating some operations�

	� The mapping between the Queues and the connection numbers �VPI�VCI� is not an easy
issue and some sort of hashing must be used�


� In order to segment and reassemble packets i�e� queues of cells� we must provide extra
mechanisms� There are two solutions� Either implement queues of queues using an extra
set of the same data structures �link the cell queues head to head� described above or
simply add an extra bit in the Pointer Memory of the previous scheme to notify the end
of one packet and the start of another �link the cell queues tail to head�� The second

��



implementation is the most preferable because in ATM the packets arrive and depart in
a FIFO manner while the �rst one oers the ability to dequeue queue i�� without having
accessed the whole queue i�

A �rst tradeo is whether we should place the structures in on�chip or o�chip memory
or memories� Such an architectural choice is very important because it implicitly de�nes the
technology to be used� On�chip memories are fast� small and require ASIC implementation
of the buering� However there are FPGAs with on�chip memory which is still narrow and
slow and does not oer size suitable for our needs� An extensive discussion of an architecture
implemented in ASIC with on�chip memories can be found in �
�� On the other hand o�chip
memories are widespread and oered in a variety of speeds and sizes� They also have the
advantage of scalability in both size and speed� It is always possible to take o one slow and
small memory chip and put on a larger and faster one� Our choice is to use o�the�self memory
chips which are low cost and scale well in size and speed� Secondary but with equal importance
is the choice of a DRAM or an SRAM� It is true that DRAMs have gone a long way in achieving
high bandwidth �SDRAM� but latency is still large and the interface much more complex in
comparison with SRAMs� Therefore o�the�self SRAM chips is a solution with many advantages
suitable for our architecture�
All the required data structures can be placed in separate memories� in one memory or some

of them in one memory and some in separate memories� Many dierent memories add to the
cost of the architecture because more chips and more pins �more expensive packaging� are re�
quired� Thus one external memory for all structures seems a good choice regarding cost memory
utilization and scalability� Another advantage of using a single o�chip memory is �exibility�
each data structure can be programmed to utilize a portion of this memory� Of course the great
disadvantage is the serialization of every function over the queues� An optimization that one
may think is placing the Head�Tail empty bits in a separate on�chip memory that would be
very small in size in comparison with the o�chip memory and would allow for some parallelism�
However this solution would reduce the scalability of the architecture as the maximum number
of queues would be forced not to exceed the provided number of bits the on�chip memory has�
For designs with �xed number of queues to support it is a fair solution�
After deciding that the best solution for our purposes is having only one memory for all

structures� another consideration is how to place Head and Tail pointers of the Head�tail table
for each queue inside the memory� If we put them one beside the other we have the advantage of
accessing both the Head and the Tail of a queue in one cycle and the disadvantage of widening
our memory� The size of the head pointer should be at least �	 bits to address ���� CBs
which is a reasonable number only for a prototype� a commercial chip should have much more
�between ����� bits�� Memories with width greater than �� bits tend to be expensive and with
few brand choices� By placing the Tail under the Head i�e� in subsequent addresses economy in
memory width can be achieved� In addition we provide an easier to scale architecture because
we can easier go from ���bit wide memories to 	��bit wide memories comparing with the passage
from 	��bit wide memories to �
�bit wide memories� Of course we must pay the price which is
doubling the access time of head and tail for the dequeue instruction where both head and tail
of a queue must be read�
Another tradeo is the placing of the Head�Tail empty bits� Even if we place them in the

same memory with the other structures there is still a number of choices� First we can place
the empty bits beside the head or tail or beside both in the Head�tail table� In this way we can
read the empty bit of each queue together with the head or tail� Placing the empty bit beside
both the head and tail pointers we delay the enqueue instruction because we must read and
write the head pointer �we would not do this normally� in the case that we perform an enqueue
on an empty queue� But if we place it beside the tail pointer only� we gain the acceleration of

��



the enqueue by one cycle �we read the tail and the empty bit in one cycle� and the same applies
to the dequeue instruction where we have to read both the head and the tail anyway� In any of
these implementations we gain in speed but we loose in memory utilization� Another alternative
is to place the Head�Tail empty bits in a separate memory space in the same memory that all
the other data structures reside� In this way we make full utilization of the existing memory
with the extra cost of one more cycle in the execution of the Enqueue command� For example
if the external memory is �� bits wide and we want to implement ���
 queues then ��	� of the
total memory used for the Head�Tail table structure is wasted or ��
� bits are not usable if we
choose to implement the empty bits in the Head�Tail table� These bits can form ��
��������
pointers for pointer memory which means ��� more cell pointers and the ability to use ��� more
cell buers if there is enough memory in CBM�
Another consideration is how to implement the hierarchical queues �queues of queues�� There

are two possible implementations�

� Either by keep on adding cells at the back of the queue even if the queue has one completed
AAL�� PDU �head to tail linking of queues� and marking the last cell as the end of the
PDU�

� or by implementing another set of queues that have as elements the cell queues �head to
head linking of queues��

In the �rst implementation each queue is regarded as a series of cells that form a series of
AAL�� PDUs� In the second implementation each AAL�� PDU is regarded as one element of
a another set of queues� The �rst implementation has the advantage of not requiring another
Free List and the disadvantage of not providing the functionality to remove a whole AAL��
PDU from the queue before we remove all its cells one by one� The inverse applies to the second
implementation� However a careful study of ATM would give us a hint for which one to choose�
In AAL�� for a speci�c connection no cells can pass forward older in arrival time cells due the
connection�oriented nature of the protocol� Therefore the best choice is the simpler one of using
one extra bit in each CP for marking the end of a AAL�� PDU and signaling the start of the
next� This bit is called End�of�PDU bit or EoP bit�

��



� Hardware Implementation

In this section we provide 	 dierent hardware implementations of Queue Management�

� The implementation incorporated in the MUQPRO I prototype

� An implementation similar to the one of MUQPRO I� that places the Empty Bits in a
separate address space achieving ���� utilization�

� And last but not least an implementation that tries to achieve the maximum possible
parallelism without taking into account the cost�performance ratio and without using
any sophisticated architectural tricks like VLIW design or pipelining�

The �rst one which is the most complete as has been used in the MUQPRO I project
is a ���bit architecture that places all data structures in one memory with the Empty Bits
incorporated inside the Tail of the Head�Tail table� It runs at 	� MHz and maintains two
sets of queues� one used for cells and another for scheduling connections in one of � available
priorities� MUQPRO I Queue Manager is capable of serving � ��� Mb�s SONET OC�	 links �

incoming and � outgoing�� the attached microprocessor that manages the OAM cells and keeping
the ���
 VPI�VCIs in � priorities according to the High Priority First algorithm as described
in �	�� The target technology was conservative Field Programmable Gate Array �FPGA� from
ALTERA corporation� the EPF��K���
The second implementation � also ���bit � has one main dierence from the MUQPRO I� It

requires one extra cycle in executing the Enqueue instruction but it fully utilizes the existing
memory� It runs at �� MHz and �ts into an EPF��K
� FPGA� At last the so called �fully
parallel� implementation was an initial ��bit experimental architecture that only demonstrates
the available parallelism of the Queue Management operations using the limited bandwidth
internal FPGA memory and as many pins required to have full parallelism� In section � an
extensive discussion on the advantages and disadvantages of all architectures exists�

��� The MuQPro I implementation

MUQPRO I is an FPGA�based prototype of a 
 input and � output switch� It demonstrates the
use of a Queue Management module that fully supports all the necessary operations executed
by the switch� The architecture of the system that operates at 	�MHz is presented in �gure �
where 
 boards are required to turn the system into a 
x
 switch� In each of the boards there
are 
 SONET OC	 modules that carry ���Mb�s tra�c to and from the network resulting in
a close to � Gb�s aggregate throughput which is considered satisfying taking into account the
FPGA technology used� The Datapath module is the physical road from the SONET modules
to the Cell Bodies SRAM memory where all incoming ATM cells together with their headers
reside� Another SRAM �Connection Table� is used to keep per VPI�VCI information useful
for separating the connections that are being serviced by the speci�c board and for VPI�VCI
translation �with the aid of the i��� microprocessor�� The �P implements Quantum Flow Con�
trol �a standard credit�based �ow control scheme supported by the industry�� extracts�inserts
ATM management cells �OAM cells� and is used to initialize and test the board�s modules� In
order to make the system�s architecture more general a Main Controller module is used that
provides the interconnection network and the interface functions between the various modules�
The Scheduler module implements the High Priority First algorithm to schedule cells for trans�
mission as presented in �	�� At last the Queue Manager module �QM module� implements all
the required buering functions and it is the one that will be presented in this section� In
general the data �ows that concern the Queue Manager are�

��



� From the Datapath to the Queue Manager for request and release addresses in the Cell
Bodies SRAM in order for the Datapath to transfer cell bodies to�from the SONET I�Fs
and to�from the �P through the Main Controller�

� From the �P to the Queue Manager to attach�detach addresses of OAM cells and test the
Queue Manager�

� From the scheduler to the Queue Manager in order to attach�detach VPI�VCI connections
to speci�c priorities�

Queue Manager has the ability to service all �ows at the required speed without giving away
its characteristics that make it general enough to be used in a variety of similar systems� To be
more speci�c� the Queue Manager serves 
 incoming and � outgoing ���Mb�s �ows� the �ow
of management cells �OAM cells� to�from the �P and the scheduling of ���
 VPI�VCIs in �
priorities that can change dynamically as described in �	�� Notice that the Queue Manager is
not limited in � priorities� ���
 queues and ���� elements per queue� Its only limit is set by
the ���bit datapath and the size of the attached SRAM�

1

1

1

1

1

1

1

1

MuQPro  I
AVG-ICS-FORTH

clock
domain

32
data

17+
addr

Queues

Scheduler
OutputQueue

Manager

Main

Controller

Data  Path

Connection
Table

Cell
Bodies

FPGA

FPGA

FPGA

FPGA

SRAM

SRAM

SRAM

128K  x  32  =  512KBytes
       =  8Kcells

phy

phy

phy

8+

8+

8+

8+

8+

8+

SONET UTOPIA

8+

8+

μP

i960

phy

30MHz

Figure �� MUQPRO I system architecture

����� Interface

The interface of the Queue Manager with external devices is presented in �gure �� Generally
the Queue Manager is a slave synchronous device with multiplexed instruction arguments and
data� This means that the instructions and their arguments are latched synchronously to the
positive edge of the clock signal and the same applies to the replies� In more detail the I�O and
control pins are�

Opcode� The opcode of the instruction to be executed by the Queue Manager� It is � bits
wide with the most signi�cant bit �bit �� being the selection of which set of queues will
be activated� Bit 
 signals the NOOP instruction and the device remains idle�

Opcode Instruction

X�XXX NOOP
Y�I�I�I� instruction I�I�I� on set of queues Y

�	



1

Valid

5

opcode

11

E_NE

16

Data
Ready

SRAM

Queue Manager

I/F

1616SAddr SData
Swe

1

Figure �� Queue Manager block diagram

In more detail here are the opcodes of all available instructions� A general description can
be found in 
���� while a more detailed description in appendix A�

Opcode �I�I�I�� � � � 	 
 � � �

Instruction Init Enqueue Write Dequeue Retfree Read Getfree Top

Arguments 
 � � � � � � �

Data� This is a ���bit wide bidirectional bus� This bus is used for the arguments of the instruc�
tions when a new instruction is issued and the return data of the executed instruction�
One turnaround cycle is required between the driving of the bus by the QM and the ex�
ternal master device� The �multiplexing� of the arguments does not add any extra delay
to the instructions executed by the Queue Manager because while the �rst access of the
SRAM occurs at the address computed through the �rst instruction argument� the second
argument is fetched� The ���bit datapath seems to be more than enough for the purposes
of the MUQPRO I� It uses ���
 queues ��� address bits� and a maximum of ���� elements
��	 address bits��

E�NE� This signal is used to indicate that the instruction currently executed altered the state
of this queue� For an enqueue and a Retfree instruction an E�NE high signal indicates
that the queue was empty before the current instruction was issued and for a dequeue and
a Getfree instruction indicates that the queue after the completion of this instruction will
become empty�

Valid� This signal is implicitly required because the lack of it would force the external master
device to have a counter in order to determine the timing of the reply� Therefore when
the signal is high the Data is driven by the QM with the answer or the E�NE output is
valid�

Ready� This signal is high whenever the QM is ready to accept a new instruction in the
next positive edge of the clock� Its usefulness comes from the need to feed the Queue
Manager with several instructions back�to�back and it informs us when it can accept a
new instruction while it executes another� When the Queue Manager is idle the Ready

�




signal remains high all the time� In the case of the retfree instruction a new instruction
can be issued the right next cycle� However the general rule is that no more than �
instructions can be under execution during each cycle�

����� Instruction set

Init�arg��arg��arg��arg�� It sets the address space each of the required data structures
�Head�Tail table� Pointer Memory� takes up� The Head�Tail table structure starts at
address arg� and uses arg� words and Pointer Memory structure starts at address arg	
and uses arg
 words� In addition the initialization procedure starts by setting the Free
List to non�empty �reset Free List Empty register�� initialize the Pointer Memory in order
to implement the Free List as described in 	��� and at last set the Head�Tail Empty bits to
� to initialize all queues to empty� Recall that the Head�Tail Empty bits are incorporated
in the Tail of the Head�Tail table�

EnQ�arg��arg�� Enqueue at arg� queue the address speci�ed by arg�� The E�NE pin is high
if the queue was empty before this instruction�

DeQ�arg�� Dequeue an element from queue arg�� The E�NE pin is high if the queue became
empty after this instruction�

Top�arg�� Return the top element of the queue arg�� No changes in arg� queue occur� If
the queue is empty the E�NE pin becomes high in order for this instruction to be able to
answer the question if the queue is empty�

GetFree�� Returns an address from the List of Free Addresses �Free List�� If the Free List
became empty after this instruction the E�NE pin becomes high in a similar way with
DeQ�

RetFree�arg�� Returns arg� address to the Free List� In other words the buer pointed by
arg� is not used anymore and with this instruction it becomes available for use� If the
Free List was empty then the E�NE pin becomes high in a similar way with EnQ�

Read�arg�� It reads and returns a �� bit word from address arg�� This instruction is used
for debugging purposes�

Write�arg��arg�� Writes arg� at address arg�� This instruction is also used for debugging
purposes�

����� Internal Architecture

The Queue Manager maintains two set of queues� one that links ATM cell bodies and another
one that maintains queues of VPI�VCIs� We have followed an hierarchical design process�
therefore we have designed one module that does all the operations on one set of queues and
have used two instances of this module to create the Queue Manager� In this way the design
and veri�cation time was reduced signi�cantly� The �rst set of queues is used for linking cells
while the second one depicts priority classes� On each queue all the operations described in
subsection 
���� can be conducted� The implementation we found as the most suitable for the
purposes of MUQPRO I was the one that places all the required data structures in one external
memory �SRAM�� The Head and Tail of each queue are one on top of the other i�e� reside in
subsequent addresses in the SRAM and the empty bit is encoded inside the Tail as the most
signi�cant bit�MS bit�� This choice came up after the requirement to reduce the number of

��



cycles it takes to execute the Enqueue instruction by one in order for the Queue Manager to be
able to handle all requests at the speci�ed period of time� The instruction set of each Queue
Manager module �QM module� is described in appendix A in full detail�

SRAM
Calculation

Address

R
eg

is
te

rs

Control Logic

Read/Write stage Address/data calculation
stage

Figure �� Queue Manager pseudo�pipeline

In a more abstract way each Queue Manager module can be seen as an address and data
generator that tries to keep the SRAM occupied as much as possible given that there is a
continuous stream of instructions heading for the QM� On the other hand pipelining is a very
eective solution for high utilization of the existing hardware and we tried to use it in our
architecture although the serialization of the operations for each instruction due to one resource
�SRAM� was unavoidable� However� by splitting the operations in two parts one that computes
address �and data in the case of write� and one that accesses the memory we can speedup the
cycle time� In �gure � we can see this pseudo�pipeline� It consists of the two stages plus logic
that tries to keep it full as much time as possible� By making the argument fetching a separate
stage we relax the o�chip communication between the Queue Manager and the Controller while
the pseudo�pipeline relaxes the o�chip communication between the Queue Manager and the
SRAM chip�
In �gure �� a block diagram of the QM module is presented� There are 
 register �le blocks�

� BAR RF � It keeps the Base Addresses and the sizes of all data structures �Head�Tail
table� Pointer Memory� that physically reside in the SRAM�

� SRC RF � It latches the instruction arguments�

� FL RF � It maintains the registers required for the Head� Tail and Empty bit of the Free
List�

� TMP RF  CNT � The temporary registers needed to store previous head and tail values
and the counter for the correct initialization of the module�

Three functions can occur in parallel in this datapath during each cycle� First an access to
the external SRAM at address speci�ed by the Saddr register� If it is a write then the data
from the Sdata register are used� If it�s a read then the return data are stored in the TMP
RF� Second� new address and data are computed for store in the Sdata and Saddr registers� At
last� a new instruction is fetched and its arguments are stored in the SRC RF� The parallelism
enabled by the datapath is required to be used as much as possible and this is achieved by the
proper design of the control path� To be more speci�c for each instruction a break down into
SRAM accesses has been performed called micro�operations� An optimized scheduling of the

��



micro�operations is necessary to get the maximum possible parallelism for each instruction given
that all structures reside in the same memory� However smart schedule we perform separately
for each instruction� there are always cycles that it�s impossible for one instruction to utilize
all three functions supplied by the datapath� For example the EnQ instruction cannot start
the �rst access to the SRAM before it has fetched its �rst argument �Queue number�� For
this reason more than one instructions can be executed during each cycle� On the other hand
the need to keep the design small for cost�speed reasons � given the FPGA technology used
� did not allow to have multiple adders and more registers� Therefore� more complex control
has been designed in order to utilize the existing datapath in an optimal way by allowing the
overlapping of instructions� The control is capable to allow a maximum of � instructions to
overlap achieving a much better utilization of the existing hardware and without using extra
registers and�or adders that have high cost in space and speed in FPGAs�

SRC
RF

+

SRC RF

Sdata

BAR
RF

Sdata

Sdata(16)

RF & CNT
Data(16)

Saddr(16)
TMP

RF
FL

Figure ��� Queue Manager block diagram

In more detail� the EnQ instruction requires � cycles to complete its execution �see �gure
��a�� while the optimal is 
� However by using the overlapping technique a new instruction can
start its execution at cycle � and consequently � EnQ instructions execute in �� cycles� 	 EnQ
instructions execute in �
 cycles etc� The more instructions that are available to feed the Queue
Manager the closer the number of cycles each EnQ instruction takes converge to the optimal
number 
� The same applies to all instructions and the overlapping occurs between all pairs of
instructions with few exceptions mentioned below� Detailed diagrams of all instructions can be
found in appendix A�
The DeQ instruction requires 
� � or � cycles to complete depending if the speci�c queue

is empty� contains only one element� or contains more than one elements as presented in �gure
��b� It extracts and returns the top queue element during cycle � and replies whether the queue
will become empty or not during cycle �� In case the queue is empty no overlapping with a new
instruction can be applied because only at cycle 
 the result �queue is empty and no elements
to dequeue exist� is known� In the other two cases it�s useless to fetch a new instruction before
cycle � for three reasons� First� because at cycle � the Queue Manager returns the top element
over the Data pins and consequently cycle � must be used as a turnaround cycle� Second� for
symmetry reasons since the user of this module will take into account the worst case� and third
because there are no resources available to start a new instruction� One more important point
is that a new instruction can be issued only at cycle � and not at cycle �� This requirement
does not slow down the instruction and simpli�es the control signi�cantly� Exactly the same
applies to the EnQ instruction where the only cycle before termination available to issue a new
instruction is cycle ��

��



enq4 enq5enq2 enq3enq1dec0

enq4 enq5enq2 enq3enq1dec0 EnQ

get1 turndec0 get0

ret2dec0 ret1

GetFree

RetFree

EnQ

deq4deq2 deq3dec0 deq1 TOP

deq4 deq5deq2 deq3dec0 deq1 deq6 deq7 DeQ

�a�

deq4 deq5deq2 deq3dec0 deq1 deq6 deq7 DeQ

enq4 enq5enq2 enq3enq1dec0

deq4 deq5deq2 deq3dec0 deq1 deq6 deq7 DeQ

EnQ

get1 turndec0 get0

ret2dec0 ret1

GetFree

RetFree

deq4deq2 deq3dec0 deq1 TOP

�b�

Figure ��� Issuing instructions right after an enqueue or dequeue instruction

The GetFree instruction is completed in 	 cycles� No overlapping can occur with this
instruction because of the requirement for a turnaround cycle� The QM answers during cycle �
while during cycle 	 it remains idle �turnaround cycle�� In order to accelerate the real execution
of this instruction �i�e� cycles it takes to execute without the turnaround cycle� whenever the
Queue Manager is idle it computes the �rst address required for the �rst access to the memory�
This is possible because this instruction takes no arguments and therefore the �rst address can
explicitly be computed at any time� Although no new instruction can overlap with a GetFree
the inverse can occur� During the execution of an EnQ or DeQ instruction a GetFree instruction
can start �at cycle � and � correspondigly� but the real overlapping is only one cycle instead
of the potential two� In other words the execution of the GetFree is extended by one cycle but
because of the overlapping of two cycles with an EnQ or DeQ instruction it can terminate its
execution in � cycles instead of three� The extension of the GetFree instruction by one cycle is
because it needs to compute an address the right �rst cycle it is issued and when overlapping
occurs the resources required for address calculation are reserved by the previous instruction
�EnQ or DeQ� that executes� In �gure ��a it is presented when a new instruction can follow a
GetFree one�
The RetFree instruction is the faster from all instructions as it can complete its execution in

only 	 cycles and a new instruction can be issued the right next cycle the RetFree has been issued
as presented in �gure ��b� However it has one limitation� Assume that an EnQ instruction has
been issued and then overlaps with a newly issued RetFree instruction� At cycle � the EnQ
instruction is �nishing its execution� while the RetFree instruction is working and can accept
a new instruction� The execution of more than � instructions in parallel is not valid for our
architecture due to the high implementation complexity�
The Top instruction has the same functionality as the DeQ instruction until cycle � when

it returns the top element of the speci�ed queue� The Read� Write and Init together with
the Top instructions have no optimizations and consequently cannot overlap with some other
instruction�

����� SRAM and Master Device requirements

The external SRAM chip must provide the required data or perform a write �����ns before the
next positive edge of the clock which practically means that for a 		ns clock cycle we need a
�����ns access time asynchronous SRAM� In addition the opcode and data must be valid before

��



enq4 enq5enq2 enq3enq1dec0

get1 turn GetFree

EnQ

ret2dec0 ret1 RetFree

deq4deq2 deq3dec0 deq1 TOP

deq4 deq5deq2 deq3dec0 deq1 deq6 deq7 DeQ

get1 turn GetFreedec0

dec0

�a�

enq4 enq5enq2 enq3enq1dec0

ret2dec0 ret1 RetFree

ret2dec0 ret1 RetFree

get1 turndec0 get0 GetFree

EnQ

deq4deq2 deq3dec0 deq1 TOP

deq4 deq5deq2 deq3dec0 deq1 deq6 deq7 DeQ

�b�

Figure ��� Issuing instructions right after a getfree or retfree instruction

the middle of the cycle in order for the decoder to be able to decode the current instruction and
the data to be latched correctly during the same cycle�

����� Merging two instances of QM together

There are two approaches one could follow to construct two sets of queues�

� Duplicate the multiplexors of the datapath and add another one for each pair to select
between the two or use double�sized multiplexors�

� Duplicate the datapath and the FSM of each Queue Manager and use an arbiter for the
synchronization between them�

The �rst solution oers a smaller and more compact solution but in FPGA technology large
multiplexors have very large delay For this reason we chose to use duplicate control and data�
paths� one for each set of queues and an arbiter for synchronization that leads to a larger and
faster design�
A block diagram with the two instances of the QM module is presented in �gure �	� The

need for the arbiter arises from the fact that two instructions addressing a dierent QM module
may overlap and only one of them must have access in the resources which are the pins and
the SRAM� This case happens because the QM module can initiate a new operation �start
the execution of a new instruction� � cycles before it has �nished the execution of a previous
instruction� This new instruction may concern the other QM module which can start working�
The right thing to do in those cases is for the older instruction to keep driving the I�O pins and
after it has �nished execution it must pass control to the second one� The QM is designed in
such a way that it is not required from the second instruction in the case of overlapping to have
control over the I�O pins before the �rst one �nishes its execution� To accomplish this task we
do not need an arbiter for all the I�O pins� For example the global Ready signal is the logical
AND between the two Ready signals of the QM modules while the E NE and Valid signals are
the logical OR between the corresponding ones of the two instances� As far as it concerns the
Data and Sdata bidirectional pins are driven by one module only when required which means
that there is no need for arbitration for them� However the SRAM write enable and Saddr
signals require arbitration because they are unidirectional signals in the QM modules� As far as
it concerns the Data and SData pins they do not need arbitration because they are bidirectional

��



and whenever one does not use them it leaves them �oating� Everything described so far are
presented in �gure �	�

OR

OR

Valid

E_NE

Ready

Opcode[4..0]

arbiter

Valid

E_NE

E_NE

QM

QM

Valid

Data

SData

Clk

Clk

Clr

Clr

Clk

Clr &

Swen0

Swen1

Swen0
Swen

ddrive

Ready0

Ready1

Ready0

Ready1

finished

finished

freeze

freeze

Saddr
Saddr0

Saddr1

Figure �	� Making � sets of queues

The arbiter does the arbitration of the Swen signal� It takes as input the opcode and the
�nished and Ready signals from the � QM modules and returns a ddrive signal which selects
who is driving the Swen pin plus the freeze signals that �freeze� the corresponding FSM in case
the other one is under execution and no legal instruction can be issued� The �nished signals
come from the control path and are high when the QM module is executing an instruction
for the last cycle i�e� next cycle it is going to �nish� The logic of this Finite State machine
is presented in �gure �
� In this �gure we can see what happens during the execution of an
instruction concerning QM �� however the case of QM � is symmetrical and is ommited� When
in idle state if the opcode�	� bit is low �i�e� the given opcode is not NOOP� then depending on
the value of opcode�
� bit that selects a QM module the QM � or � takes the ownership of the
Swen pin �state m� for the QM � module� and starts executing the instruction opcode�	�����
Lets assume that an instruction concerning QM � is issued �the other case is symmetrical��
There are a few dierent cases depending on the type of instruction�

A� if the instruction is enqueue� dequeue� top or init then we move to state edt m� where QM
� becomes the master of the Swen pin and no new instruction can be issued�

B� if the instruction is retfree we move to state r r� where QM � becomes the master of the
Swen pin and a new instruction can be issued� The new instruction can be an enqueue�
dequeue or top�

C� if the instruction is getfree we move to state g m� where QM � becomes the master of the
Swen pin and no new instruction can be issued�

The need for this type of grouping comes from the fact that � executing instructions may �nish
at the same cycle and the arbiter must know that both have terminated� For example think of a

	�



retfree instruction in an empty free list issued right after �� cycles before it �nishes� an enqueue
instruction� Then at the last cycle of the enqueue instruction both instructions terminate and
the arbiter would not be able to distinguish between the two� In other words� the arbiter must
have some way to remember what kind of instruction is executing while a new one is being
issued� Each instruction may be in one of these states� Master of the I�O pins and no other
instruction can start� master of the pins and a new instruction can start or master of the pins a
new instruction is executing and no new instruction can be issued� Bare in mind that no more
than two instructions may be under execution on the system in any cycle�

����� The instruction is enqueue� dequeue� top or init �case A

When in cycle edt m� �coming from case A� either of these may occur�

� Either �nished�� and Ready�� which means that QM � will �nish next cycle and will be
ready to accept a new instruction �this new instruction may be for QM � as well� at the
same cycle leading to the idle state� or

� �nished�� and Ready�� which means that next cycle a new instruction can be issued
but QM � will still be working leading to state edt r��

In state edt r� a new instruction can be issued� If this new instruction is retfree and the
free list happens to be empty then we move to idle state but QM � remains the master of the
I�O pins for one more cycle� In any other case we move to cycle edt w� where QM � remains
the master and depending on the instruction given on cycle edt r� we move to the proper state�

enqueue�dequeue�top� Next state will be edt m� �or edt m� if the instruction is for QM ��

retfree and non�empty free list� Next state will be r m� �or r m� if the instruction is for
QM ��� During state r m� or r m� the QM � or � is the master and no new instruction
can be issued�

getfree and non�empty free list� Next state will be g m� �or g m� if the instruction is for
QM �� and no new instruction can be issued�

����� The instruction is retfree �case B

When in cycle r r� �coming from case B� and assuming that QM � has issued the current
instruction a new instruction can be issued and QM � is the master� The new instruction that
can be issued cannot be a retfree because the Free List Head and Tail registers have not been
updated by the current retfree instruction yet� For the same reason it cannot be a getfree
instruction� Next cycle is r m� where QM � is the master and no new instruction can be issued
during this cycle� Depending on the instruction issued in the previous cycle we move to state
edt m�� edt m� or idle�

����� The instruction is getfree� read or write �case C

When in cycle g m� �or g m� depending to which module the instruction corresponds� QM �
�QM �� is the master and no new instruction can be issued� This is due to the turnaround cycle
we discussed about in the subsection that describes the getfree instruction� Next cycle will be
the idle state where we move when the �nished signal goes high�

	�



g_m0

!finished0

!finished0 & !ready0

opc = op

edt_m0

!finished0 & ready0

edt_r0
retfree & empty FreeList

idle

edt_w0

!op[3] & !op[4] &  (op=={top | enq | deq})

!opc[3] & !opc[4] &  (opc=={top | enq | deq})

!finished0

!op[3] & !op[4] & op=={gefree | read | write}

finished0 & ready0

r_m0

r_r0

!opc[3] & !opc[4] & opc==gefree

from idle

!opc[3] & !opc[4] & opc==refree

idle

!opc[3] & !opc[4] &  (opc=={top | enq | deq})

to idle

Figure �
� Arbiter �nite state machine

����� Testing

The ALTERA MAX�PLUSII digital design environment has the ability to produce gate�level
Verilog code� In order to simulate the external SRAM chip we wrote a simple model of the static
memory in Verilog� Whenever a request to the SRAM model is made� after a constant time �a
parameter to the model� it responds� Then we had to �nd a way to generate valid vectors and
verify that the output of the simulation is the proper one� For the vector generation we wrote
C code that performs the following�

� Queue Management in software

� Random selection of an instruction through a random�� routine

� Creates an intermediate queue structure for the free slots� Every time we perform a getfree
or a dequeue instruction the returned slot number is stored in this structure and whenever
an enqueue or retfree instruction is performed there must be some slot in this structure
to take it out�

In every iteration we select randomly a type of instruction� and then check if it is valid�
An enqueue or a retfree instruction is valid if the intermediate queue structure is non�empty
and we use one of the slots stored in it to enqueue to a random queue or return it to the
free list� A dequeue instruction can be performed only if the randomly chosen queue is non�
empty and this can be checked through counters that we maintain for each queue� In a similar
way a getfree instruction can be performed only if the free list is non�empty which is checked
through a global counter� After we have chosen a valid instruction we use the software queue
management routines to execute it an we write a vector in Verilog syntax that performs the
same instruction in the MUQPRO I implementation� After as many iterations as we have given
at the command line we end up with 	 output �les� One with the memory image of all structures
after the execution of the Queue Management in software� one with a the translation of this
�le in human readable format and one with a Verilog vector �le to be used for the simulation

	�



process� The �le which is in human readable format contains for each queue what slots are in or
if it�s empty� In this way we know how the memory would look like after the speci�ed sequence
of instructions�
Then we can start the execution of the simulation with the vector �le under the Verilog

CADENCE simulation environment and at the end we get a memory image of the MUQPRO
I� By using the same routine that turns this image into human readable format we know for
each queue what slots are inside� With the unix di command we can compare the software
and hardware results and �nd possible mistakes� We did this simulation for several hundreds
of thousands of instructions to test each QM module and then both together and everything
worked �ne� The generated vectors are also good examples of how to supply the MUQPRO I
with valid instructions�

�����	 Cost and performance

The MUQPRO I Queue Manager module has been implemented in an ALTERA FLEX��K��
FPGA in AHDL �Altera Hardware De�nition Language� and requires ���� logic cells and no
memory cells� The logic utilization of the device was ��� while the pin utilization was 	���
The clock frequency is 	�MHz in worst case analysis as measured with the ALTERA Timing
Analyzer tool� The average fan�in is 	����
 which means that each cell has 
 inputs on average
and 	��� of them are used �on average�� In order to meet the 	�MHz timing requirement the
logic synthesizer added 	�� more logic or ��
 extra logic cells� The low pin utilization occurs
because we did not �nd any cheaper packaging for this type of device� The design can �t into
a FLEX��K
� device but with clock frequency of ��MHz and ��� logic cell utilization�

��� The �fully scalable� implementation

The MUQPRO I implementation has been tuned to serve a speci�c system with its own char�
acteristics� The main target of this implementation is to sustain the buering of cells from
� ���Mb�s �ows and we would not accomplish that without making useless a portion of the
memory space �due to the incorporation of the empty bit into the Tail pointer�� However there
may be cases that operations are not so time critical and full utilization of the attached memory
improves cost�performance ratio� Such a design has few dierences regarding the datapath� but
the most dierences are in the control path� To be more speci�c the dierences in the datapath
are�

� One more Base Address and Size register in order to keep the starting address of the
memory space that maintains the Empty Bits�

� One extra multiplexor for selecting from the ���bit word read from the SRAM which is
the empty bit that corresponds to the addressed queue�

The extra delay of one cycle in the Enqueue instruction comes from the fact that we cannot read
a ���bit word from the memory and select the appropriate bit through the multiplexor during
the same cycle� All the other instructions take the same number of cycles as in the MUQPRO
I implementation� The datapath of this implementation is presented in appendix C� As far
as it concerns the control path a dierences in the scheduling of the memory accesses for each
instruction exist� without aecting its complexity� More details can be found in appendix D�

��� The �fully parallel� implementation

This implementation was an initial exploratory design to �nd out possible tradeos and the
available parallelism� In this implementation each instruction is triggered by one unidirectional

		



pin and there are two on�chip �inside FPGA� narrow memories� one for the Pointer Memory
and one for the Head�Tail table� The Empty Bits are incorporated inside the Head�Tail table�
One word of the Head�Tail table contains the Head� the Tail and the Empty Bit for this

queue� This is the reason that � bits for the Head and the Tail has been chosen resulting in
an ���bit wide datapath �� bits for the Head� � bits for the Tail and � bit for the Empty Bit��
This architecture has high�cost and low scalability because it requires one double and another
single width memory compared with the MUQPRO I and �fully scalable� implementation that
require only one single width memory� The instruction set of this exploratory design is limited
to Enqueue� Dequeue� GetFree and RetFree and Init� However this architecture is capable of
completing the execution of an Enqueue instruction in � cycles� a Dequeue instruction in 	
cycles and the GetFree and the RetFree instructions in � cycles without any state�of�the�art
pipelining or other smart architectural tricks� The data and control paths are presented in
diagrams of appendix E�

	




� Software implementation of Queue Management

So far we have designed and evaluated several architectures that perform Queue Management
in hardware� However� the rapid development of fast and low�cost �P makes software imple�
mentations attractive and scalable solutions for use in embedded systems� Furthermore� we
have not seen yet how Queue Management is integrated in real systems� For this reason we �rst
develop software for Queue Management and measure its performance in the � widely used in
embedded systems � INTEL i��� RISC �P� To be more speci�c we measure the time it takes
each EnQ�DeQ operation if we only alter the pointers instead of the data with sequential and
random input patterns� As an input to an EnQ operation we de�ne the queue ID and a pointer
to a buer while a DeQ operation requires only a queue ID� Then we incorporate these opera�
tions in code that performs SAR in the same �P demonstrating its usefulness and showing the
percentage of time that Queue Management and data movement takes� Apart from these we
compare the various software and hardware implementations and discuss the advantages and
disadvantages of each one� resulting in solutions with fair cost�performance ratio as a function
of the requirements�

	�� Programming environment

We used an evaluation board made by CYCLONE with an INTEL i���CA processor attached
running at 
�MHz� The board was connected to a PC through a PCI interface and a monitor
program supplied by INTEL has been used for downloading and executing programs on it� The
i���CA processor is capable of executing one assembly instruction every � or � clock cycles
at maximum� All the code has been written in C and compiled with Intel�s gcc��� compiler�
The executable format was COFF ��Fco �ag� and the optimization levels exploited were the
no�optimization ��O� �ag� and full optimization ��O
 �ag�� Time has been measured with
the benchmarking routines supplied by CYCLONE �bentime��� which provide accuracy of �
microsecond� The C code implements a Head�Tail table of variable size and a Pointer Table
of size 	�	��	 with each entry 	��bits wide� We have chosen the width of 	� bits because it is
the basic unit of transfer to and from the i����s memory subsystem� In addition� the table size
of 	�	��	 has been chosen because it is close to the maximum available memory of our system
con�guration �� MB DRAM�� Thus the memory used for the Pointer Table is ���MB�

	�� The EnQ operation with canonical input

In our �rst experiment we used the minimal code needed to implement an Enqueue operation�
For ��� iterations we enqueued subsequent cells in subsequent queues� Therefore� in the �rst
iteration we enqueue cell � in queue �� in the second iteration we enqueue cell � in queue � etc�
This is what we call canonical input� When we reach the last queue we start from queue � again
and we go on and on� The same applies when we reach the last cell� For such a simple pattern
the Head�Tail table is referenced sequentially allowing for e�cient use of i����s data cache ��KB
for the i���CA processor that have been used�� We must also mention that the loop code is
small enough to �t in the instruction cache� �� assembly instructions at most� times 	� bits per
instruction equals ��� bytes� On�chip instruction cache of the i���CA chip is �KB organized
in two sets of �� ��word lines� Thus the provided measurements indicate a lower bound for the
time that a �real world� EnQ operation would take to run on this processor� The number of
assembly instructions executed in each iteration and the number of load and store instructions
included in this code segment can be determined by the table presented below�

	�



Optimization Number of Loads Stores
level instructions

� 
���� ��� 
��


 ����� ��	 ��	

In �gure � we can see the in�uence of increasingNqueues in execution time of each EnQ operation�
Clearly� there is a threshold value of about ��� for Nqueues over which there is no extra time
overhead however high is this parameter� This occurs because the Head�Tail table gets large
and cannot �t inside the cache� forcing this way the processor to access the Head�Tail table
from the much slower DRAM�

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e 
fo

r 
ea

ch
 E

nQ
 o

pe
ra

tio
n

Number of distinct Queues

"enq-O4.gnuplot"
"enq-O0.gnuplot"

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e 
fo

r 
ea

ch
 E

nQ
 o

pe
ra

tio
n

Number of distinct Queues

"enq-O4.gnuplot"
"enq-O0.gnuplot"

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e 
fo

r 
ea

ch
 E

nQ
 o

pe
ra

tio
n

Number of distinct Queues

"enq-O4.gnuplot"
"enq-O0.gnuplot"

Figure ��� Enqueue serial operations

	�� Mixed EnQ
DeQ operations with canonical input

The DeQ operation is di�cult to be benchmarked because the queues become empty after a
few thousands iterations resulting in �dummy� DeQ operations from empty queues� If we let
the program run for only a few thousands iterations �to be speci�c 	�	��	� the accuracy is very
low and not satisfying for our purposes� The possibility of using �fake� DeQ operations was
considered unrealistic� An implicit way to measure the DeQ operation is through mixed EnQ
and DeQ operations� We �rst �ll all the queues with a series of EnQ operations and then empty
them by applying an equal number of DeQ operations� By repeating this procedure for a large
number of iterations we can safely measure the average time that an EnQ or DeQ operation
takes to complete� Knowing the execution time of an EnQ operation with its corresponding
parameters from the previous experiment we can approximate the execution time of a DeQ
operation �using the same parameters� with fairly high accuracy� The input pattern to this
experiment is the same with the one described in the previous subsection�

	�� The EnQ operation with random input

In real applications Queue Management is executed with random input and this is our next
series of measurements� What we expect to see is a slight degradation in speed against canonical

	�



0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e 
(u

s)

Number of distinct queues

"mixed_O0.gnuplot"
"mixed_O4.gnuplot"

Figure ��� Mixed serial operations

input� In �gure �� the upper curve depicts the time that takes one EnQ operation to complete
if we choose randomly a queue and a cell to enqueue through the standard uniform distribution
function rand��� A call to rand�� has been measured to take ��� microseconds and the EnQ
operation makes � calls to rand��� Therefore the real time a random EnQ operation takes is
given by the middle curve of this �gure� The lower curve ensures our expectations� A random
EnQ operation must be more time consuming than the canonical EnQ but both curves must be
close to each other�

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e 
(u

s)

# Head/Tail table entries

"enq_random_O4.gnu"
"enq_random_O4_real.gnu"

"enq_serial_O4.gnu"

Figure ��� Random Enqueue operations with 
th level optimization

	�	 The SAR model

The basic operation that occurs in an ATM system as we have seen in section � is moving
cells from one set of queues �the input queues� to another set of queues �the output queues��
Segmentation and Reassembly follows this model by adding�removing the proper headers and
trailer to�from variable�sized packets as speci�ed by AAL�� while transferring packets from the

	�



packet �input� queues to the cell �output� queues �by manipulating pointers� and the inverse�
We have implemented the one direction �Segmentation� because the other is equivalent� In

Segmentation� in each iteration� one packet is dequeued from a packet queue� padding and trailer
are added and the resulting PDU is segmented into 
��byte cells that are enqueued together
with the ATM header in the proper cell queue� In Reassembly� in each iteration� one cell is
dequeued from a cell queue� ATM header is removed and the cell is enqueued in the proper
packet queue� When a cell has a certain bit in the PT �eld set then it is the last one of the
packet and the packet has been fully reconstructed� Then the length of the packet must be
determined by reading the corresponding trailer �eld and padding must be removed leaving the
packet body ready for the higher�level �OSI� layer� Dierences between the two paths�

� In each iteration in Segmentation the cells of the dequeued packet are moved into the same
cell queue while in Reassembly in each iteration each dequeued cell moves in a dierent
packet queue because of multiplexing of cells from dierent virtual connections over the
same physical one �this is not true if the packet size is equal to the cell size��

� In Segmentation the proper padding must be computed based on the size of the dequeued
packet while in Reassembly the size of the reconstructed packet must be determined by
reading the proper �eld of the AAL�� trailer�

� In Segmentation a trailer must be added which is more time consuming than trailer
removal �actually to remove a trailer you can simply leave it without reading it��

� In Reassembly the header of each cell must be simply removed and kept once for every
connection while adding the header in Segmentation is more time consuming�

We wrote C code that performs segmentation of a packet of variable size �from � byte to
�
KB� according to the AAL�� protocol� As we can see in �gure ��� we allocate at �rst two con�
tinuous memory blocks� the Packet Bodies and Cell Bodies where the packets and cells physically
reside� The Packet Bodies memory block has size equal to MAX PACKETS!PACKET SIZE
bytes� The Cell Bodies memory block has the same size and both blocks must be a multiple
of 
 for alignment in the machine word boundary �a word is 
 bytes in the i��� architecture��
The Packet Bodies memory block is divided into smaller blocks � the packets � of size be�
tween MIN PACKET SIZE and PACKET SIZE bytes� The PACKET SIZE is a multiple of the
CELL SIZE which is 
� bytes�
Each of the two memory blocks �Packet Bodies and Cell Bodies� is further divided into

smaller blocks of size PACKET SIZE�� �� byte AAL�� trailer� regarding the Packet Bodies
and CELL SIZE�� �� byte ATM cell header� regarding the Cell Bodies� In this way each packet
is identi�ed by its base address �lets call it PBP� which is the pointer at the beginning of the
Packet Bodies block plus an index number� For example� the packet i resides in the physical
location PBP�i!PACKET SIZE� The same applies for the Cell Bodies memory block� Apart
from the physical space that the cell and packet bodies reside we allocate the necessary space for
the Queue Management functions EnQ� DeQ� GetFree� RetFree as were presented in section 	
and we keep separate queues for the packets and the cells� We also use a random�� function that
gives us a uniform distribution of positive integer numbers and the packet processing routine�

����� The packet processing routine

The packet processing routine performs all the necessary operations over the packet in order to
become a series of valid ATM cells� As an input it takes the total number of cells to process�
In more detail the following iterative process occur whenever this routine is called�

	�



Cell Queues

Packet Queues

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

ptr headercnt ��
��
��
��
��

��
��
��
��
��

���
���
���
���

.....
Cell Bodies

C0 C1 C2 C3 Cm

P0 PnP1 .....
Packet Bodies

.....

..... .....

Segment
Process

��
��
��
��
��

��
��
��
��
��Segm_table

Random Mux

Random DeMux

Figure ��� The SAR model

�� A packet queue number is picked up randomly�

�� A packet slot is dequeued from the previously selected queue number�

	� A packet length in bytes is determined �randomly� with lower and upper limits set by
MIN PACKET SIZE and PACKET SIZE� A packet size of zero it is not allowed�


� Depending on the size of the packet the computation of the necessary padding follows� It
must be such that the packet�s length plus the trailer size �� bytes long� be a multiple
of the cell size i�e� a multiple of 
� bytes� In addition we compute the number of cells
contained in this packet�

�� A trailer is generated randomly and copied at the appropriate position of the packet i�e�
at the right position of the Packet Bodies memory block�

�� A header is also generated randomly for use when the cells are copied at the proper queues�

�� A cell queue number is picked up randomly�

�� For each 
� byte cell of the packet the following occur�

�a� A cell slot number is dequeued by using the Queue Manager�s GetFree�� routine�

�b� The cell slot is enqueued in the previously selected queue�

�c� One cell �
� bytes� of the packet is copied into the proper Cell Bodies memory block
position determined by the cell slot� For example for the cell slot 
 and packet �
when only one cell has already been processed� we perform a copy of 
� bytes from
Packet Bodies��!PACKET SIZE�CELL SIZE� to Cell Bodies�
! �CELL SIZE�HEADER SIZE���

	�



�d� In addition at position Cell Bodies�
!�CELL SIZE�HEADER SIZE�� �continuing
the previous example� we copy the pre�computed header of the cell �� bytes long��

�� The packet slot returns back to its queue with a Queue manager�s Enqueue command�

��� A local counter is incremented by the number of cells of the packet that have been pro�
cessed so far�

This was just one iteration� the loop ends when the total cells processed are equal to the required
number of cells that has been given as input� Our intention was not to include any protocol
processing or signaling functions in this piece of code but to perform only a primitive set of
operations that would be a subset of functions in every ATM system� That�s why we did not
perform any CRC checking� It would aect execution time greatly by requiring the read of the
body �CRC	�� and the header �CRC�� of each cell� In addition CRC checking is not something
required in all AALs �e�g� AAL�� does not require any CRC computations��

����� The iterative process

We call the packet processing routine ITERATIONS times in order to increase accuracy� The
argument given as input is PACKET SIZE!MAX PACKETS divided by CELL SIZE� During
each iteration the cell queues become full so we must re�initialize them to empty in order for each
iteration to �nish properly� Of course before we enter the iterative process we must initialize
both cell and packet queues� the cell queues to empty and the packet queues �lled with all
available packet slots�
After this we enqueue the packet back to the queue that was before so that the packet queues

never become empty� This is a practical requirement because we repeat the whole process several
times and we must have packets to supply it continuously� At the end of this loop we initialize
the cell queues back to empty and repeat� The execution time is measured as time per cell�
All the cells that contribute to this process are ITERATIONS!PACKET SIZE IN CELLS� By
dividing the total execution time with this quantity we get the average time per cell� This
measure appears to be the most appropriate because the basic unit of transfer in an ATM
system is the cell and we care about the delay of Queue Management for each cell� We expect
it to be lower the larger the packet gets�

����� The parameters

The parameters are the number of packets in the system MAX PACKETS� the minimum and
maximum packet size in bytes MIN PACKET SIZE� and PACKET SIZE�TRAILER SIZE and
the number of packet and cell queues� MAX CELLQS and MAX PACKETQS� The parameters
that have been chosen as variables are the minimum and maximum packet size and the number
of cell queues� The packet size as we will see is a critical parameter together with the number
of queues used� We kept the number of packet queues constant in order to be able to measure
queue management by varying the number of cell queues� The packet size is between � and
���� cells in size and the number of cell queues is between � and ������ We de�ne the total
number of packets in such a way that in each iteration of the iterative process at least �����
cells are processed� The number of iterations are 
�� which means about � minutes for every
experiment� Keep in mind that all the measures were taken manually because there is no way
to store the results and someone must be there to see them on the screen� The total memory
used is 
��MB for the Cell and Packet Bodies memory blocks plus the memory required for the
queue management and the rest of the variables� The size of the memory used is considered
satisfying because it makes no dierence in execution times by accessing � or �MB� provided


�



that we perform enough iterations of the process� To be certain that the number of iterations
is enough we doubled and quadrupled the iterations for a few experiments without noticing any
dierence in execution times for the �rst three decimal digits�

����� Measurements

All measurements present a best�case analysis �a lower limit� of how much time SAR and any
other function with the same requirements may take in a typical embedded system with a RISC
microprocessor� In the following �gures we can see dierent con�gurations with variables the
cell queues and the packet size� Notice that queue management in the i��� does not change
too much with the number of queues� which practically means that � queues or ������ queues
make little or no dierence in execution time� This shows the scalability of queue management
implemented in software� Enqueue operations in more queues are a bit slower especially when
the number of queues gets very large because the processor brings inside the cache blocks of the
Head�Tail table that constitute a small portion of this table� On the other hand more queues
mean that enqueue in empty queues occurs more often and because of the implementation �the
head and the tail are one on the top of the other� writing in subsequent addresses the same data
is faster because of the special modes that current DRAM chips oer and the DMA capability
of the processor itself� The body of the cell itself �together with the ��byte header� requires
��� microseconds on average for copying from one location to another according to independent
measures we did� In addition one call to the random�� routine we used takes ��
 microseconds
on average� We also conducted measures on how much time it takes to set the cell queues to
empty� depending of course on the number of queues and for ������ cell bodies�

Cell Queues � �� �
 ��� ���
 ��
� 
��� ���� ��	�


Time �us� 
����� 
����� 
����	 
����� �����
 �����	 ���
�� ������ ������

On average � microsecond per cell is consumed for the body copying� Also remember that
each enqueue or dequeue operation takes on average between ��� and ��� microseconds� For the
segmentation of � packet that consists of N cells we make the following calls to various routines�

� �� calls to random�� � � for the selection of the packet and cell queues� � for the header�
� for the trailer� � for the packet length

� N calls to GetFree�� �to get N free cell slots�

� � call to dequeue�� �for dequeuing one packet�

� N�� calls to enqueue�� �to enqueue the N cells of a packet and the packet itself�

� � copy of the ��byte trailer at the end of the packet

� N copies of the 
��byte cells from the Packet to the Cell Bodies memory blocks

� N copies of the header of each cell at the beginning of its body

The results of the measurements for various packet sizes in cells are presented in �gures ��� ���
��� �� and on the left plot of �gure �	� As we can see the per cell cost for this operation drops
signi�cantly when we go from � cell packets to �� cell packets or greater� This is because the
segmentation process � trailer and header generation and packet length and padding computa�
tion � costs more the smaller the packet is and gets its highest value when the packet reaches


�



the size of one cell� In all measurements when we say packets of � cell in size they can vary
from � byte to 
� bytes so as the packet and the trailer together do not exceed the � 
��byte
cell�
Another observation is that the Queue Management does not aect greatly the execution

time of the operation as the number of queues increase� We pay an almost standard cost that
changes little with the number of queues� But as the packet size gets larger the time curve
becomes more sensitive to changes in the number of queues� This is because the segmentation
time per cell drops low and the queue management starts playing a more profound role in
the operation� From the ��� cell packets and above there is little change in execution times
but there is a small but clear increase tendency with the number of queues� Someone can
observe that there are certain points in the curves that spikes occur� This phenomenon can
be easily seen in �gure �� and on the left curve where for ����� queues the execution time
jumps ��� microsecond up which is a signi�cant variation� These spikes also exist in other
�gures in smaller scale� The best explanation we found is that the speci�c input pattern causes
much more cache misses leading to that phenomenon� This observation leads us to another
conclusion� A processor does not have very accurate guarantees on when the running program
will terminate� A question that raises is why we have such a large spike on �gure �� and not
in any other �gure� The answer is not so easy� We made measurements for packets of � cell
in size in an ULTRA SparcStation �� machine and these spikes were disappeared �see on the
right plot of �gure �	�� For the measurements we used the same C code compiled with the
GNU gcc compiler and two dierent optimization levels � and 	 �i�e� no optimization and full
optimization�� Consequently we reached the conclusion that the gcc��� compiler and�or some
i��� speci�c hardware optimization causes this relatively large spike�

25

25.2

25.4

25.6

25.8

26

26.2

26.4

0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e 
pe

r 
ce

ll 
(u

s)

Number of Queues

"sar1"

15

15.2

15.4

15.6

15.8

16

16.2

16.4

0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e 
pe

r 
ce

ll 
(u

s)

Number of Queues

"sar10"

Figure ��� Measurements for � and �� cell packets


�



14

14.2

14.4

14.6

14.8

15

0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e 
pe

r 
ce

ll 
(u

s)

Number of Queues

"sar50"

13.6

13.8

14

14.2

14.4

0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e 
pe

r 
ce

ll 
(u

s)

Number of Queues

"sar100"

Figure ��� Measurements for �� and ��� cell packets

13.6

13.8

14

14.2

14.4

0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e 
pe

r 
ce

ll 
(u

s)

Number of Queues

"sar200"

13.6

13.8

14

14.2

14.4

0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e 
pe

r 
ce

ll 
(u

s)

Number of Queues

"sar400"

Figure ��� Measurements for ��� and 
�� cell packets

13.6

13.8

14

14.2

14.4

0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e 
pe

r 
ce

ll 
(u

s)

Number of Queues

"sar800"

13.6

13.8

14

14.2

14.4

0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e 
pe

r 
ce

ll 
(u

s)

Number of Queues

"sar1200"

Figure ��� Measurements for ��� and ���� cell packets


	



13.6

13.8

14

14.2

14.4

0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e 
pe

r 
ce

ll 
(u

s)

Number of Queues

"sar1-1200"

0

5

10

15

20

25

30

0 2000 4000 6000 8000 10000 12000 14000 16000

T
im

e 
pe

r 
ce

ll 
(u

s)

Number of Queues

"ultra_measO0.gnu"
"ultra_measO3.gnu"

"sar1"

Figure �	� Measurements for ������ cell packets and ULTRA measurements for � cell packets







����� Analysis

In the following tables we analyze the per cell time for Segmentation into the dierent com�
ponents� The �rst table shows the analysis for � cell packets while the second table presents
what happens for ����cell packets and above �there are small dierences from ����cell packets
and above�� For each component �Op� Type� we measure the number of times �Number of
Op�� it is executed for processing of � cell� and by taking into account a typical execution time
for each component �Time�Op��� as measured by independent measurements� we end up with
the estimated execution time of it� The various components are the EnQ and DeQ operations
�Queue Management� copy of the header� trailer and body of the cell� setting queues to empty
after each iteration �in order to be ready for the simulation of the transmission of the next �����
cells� and the calls to the random�� routine� The Total �eld is the sum of the execution times
of all operations according to our computations �done separately for each operation� while the
Remaining �eld is the extra time required to reach the real time measured for Segmentation�

Op� Type Number of Op� Time�Op� Total time�us�

DeQ � ���� ���� ������

EnQ � ���� ��� ������

Copy �� bytes ����us�byte ��� �
�����

Empty Queues ��� ��� ��� ������

Random�� �� ��
 ��
 �	�����

Total � � ���
� ������

Remaining � � ����� ������

Op� Type Number of Op� Time�Op� Total time�us�

DeQ �
��� ���� ��� ������

EnQ �� �
��� ���� ���� ������

Copy �	 bytes ����us�byte ���	 �������

Empty Queues ��� ��� ��� ��	����

Random�� ��
��� ��
 ��� ������

Total � � ���� ������

Remaining � � ���
� ���
��

Queue Management regards the time it takes to execute 	 operations in the case of � cell
packets �dequeue a packet enqueue a cell and re�enqueue the packet� and one operation in the
case of ��� cell packets �enqueue the cell�� The dequeue and re�enqueue of a packet occurs once
every ��� cells and represents a small amount of time� The other cases are similar to the one
of ��� cell packets and thus there are represented su�ciently�

Time per cell Queue Management

� cell packet ���� �
���

��� cell packet �
�� ����

The general conclusion is that Queue Management takes ����
� of the CPU time in an
optimized ATM system and that number can deviate by ����
� during dynamic execution in
a larger code segment� In other words� Queue Management used as a subroutine of a larger
program may take up to ��� of the CPU time which is considered fairly large� The Segmentation
routine has a net thoughput on a i��� processor that ranges between ����

�� � ���
Mb�s to


�



����
���� � ����Mb�s which is considered low and can only serve on the limit very low speed ATM
systems with relatively large packets� On the other hand if we use the microprocessor only
to execute Queue Management operations and assuming � operations per cell we can have
a typical net throughput of ����

����	���� � �
�Mb�s or ���

����	���� � ���Mb�s with the headers�

Further discussion and comparisons between dierent implementations can be found in section
��


�



� Comparisons

So far we have explored two dierent approaches for Queue Management� one in hardware that
has been fully implemented for MUQPRO I and another in software running on an embedded
microprocessor �i����� Now it is time to compare the dierent approaches� balance their ad�
vantages and disadvantages and result in conclusions that support each implementation as a
function of the requirements� For the hardware implementation we will use the core Queue
Management unit of each architecture �MUQPRO I� �fully scalable�� �fully parallel��� i�e� the
one that implements one set of queues� All architectures are targeting the ��MHz frequency in
order to keep a size�speed balance and reduce the cost by using smaller devices and their statis�
tics are presented in the following table showing that the required logic is comparable in any
case ��Fully scalable� implementation requires some more logic in comparison with MUQPRO
I��

Implementation Pin util� Logic util� Avg Fan�in Extra cells

Fully scalable " ��MHz ��� ��� 	����
 ���

MUQPRO I " ��MHz ��� ��� 	����
 ���

MUQPRO I " 	�MHz ��� ��� 	��
�
 	��

A typical unidirectional system requires one enqueue instruction for every cell arrival or one
dequeue if it�s a cell departure� We omit the getfree and retfree instructions assuming that
we can do something smart and not requiring them very often �e�g� use the dequeued slots to
enqueue a new cell that just arrived�� The dierence between the hardware implementations
results from the one cycle dierence of the Enqueue operation and thus we will measure the
throughput taking into account the receive side of an ATM system �i�e� Enqueuing received
cells�� However� the common physical layers used for ATM �e�g� SONET� are bidirectional
and the presented numbers drop at half� The throughput of the MUQPRO I��� MHz� is be�
tween ���� bits

��ns��cycles � ����Gb�s and
���� bits

��ns��cycles � ����Gb�s depending on the network tra�c and
if we can fully utilize the device� The same numbers for the fully scalable architecture are
���� bits

��ns��cycles � ����Gb�s and
���� bits

��ns��cycles � ���	Gb�s� Considering the MUQPRO I implemen�
tation at 	�MHz which also �ts in a FLEX��K�� device we can reach a throughput between
���� bits



ns��cycles � ���
Gb�s and
���� bits



ns��cycles � ���Gb�s depending on the packet size and the network
tra�c while for the software the same numbers� considering the typical execution time of an
Enqueue operation as �����s� is ���� bits

�����s � ���Mb�s� The table bellow summarizes the Queue
Management performance of all hardware implementations and the implementation in software�
All numbers consider the best and worst case of the enqueue and dequeue operations and we
do not consider any getfree or retfree instructions� The throughput is measured without the
headers i�e� net throughput�

i��� " 
�MHz ��� Mb�s

fully scalable " ��MHz ���� Gb�s � ���	 Gb�s

MUQPRO I " ��MHz ���� Gb�s � ���� Gb�s

MUQPRO I " 	�MHz ���
 Gb�s � ��� Gb�s

In addition there must be some hardware that transfers the cell bodies and headers at a
memory with su�cient throughput to keep up with these speeds� The MUQPRO I implemen�
tation oers scalability as we can always move to a larger and more expensive device and reach
higher speeds� The highest we reached for a reasonable pin and cell utilization was 	�MHz at
a EPF��K
� device but as FPGA technology advances higher speeds are not surprising to be


�



achieved� Another parameter that has not been mentioned is the number of queues� all the
hardware discussed so far has ���bit datapath and can address up to �
K dierent positions
shared between the various data structures� Both hardware implementations are parameterized
in such a way that wider datapaths can come up with the change of a few parameters �the
datapath�s width and the logarithm of it� and with re�compilation it can �t to a newer and
faster device� If we implement Queue Management and header and body storing and retrieving
in hardware and the rest of the ATM system in software� the throughput of the system as�
suming zero overlay or zero interface delay between the processor and the hardware is between

���� bits
������������s � �����Mb�s and ���� bits

�������	�����������s � ����
Mb�s in comparison with that of a

plain software implementation ����� bits
���s � ���	�Mb�s� which practically means a speedup of

��	
������ Therefore data transfer and queue management in hardware can provide a signi�cant
system performance which can extent further if header generation is also performed in hardware�
In conclusion a microprocessor that executes the basic functions of an ATM system has

poor performance �as expected� with throughput that can be as low as ��Mb�s and not higher
than ��Mb�s� Hardware add�ons are required in order to achieve higher speeds and several
hardware implementations were presented with more preferable that of MUQPRO I at ��MHz
and 	�MHz that �ts into a FLEX��K�� ALTERA FPGA with reasonable cost� On the other
hand the fully scalable implementation makes full utilization of the memory but with greater
complexity and lower scalability in speed�


�



A Functionality and timing diagrams for each instruction

In this appendix we will analyze the available commands of the Queue Manager� that cover all
the required functionality� In the presented timing diagrams clk is the clock� clr is the reset
signal� op�
���� is the opcode and the valid� ready and e ne signals follow� The swen signal
represents the SRAM write enable signal that performs a write when high and a read when
low� The Saddr signal is the address to the SRAM� the sdio signal is the bidirectional data
to the SRAM� the dio signal is the Data to the master device� the �rst qmdpfs is the Finite
State Machine �FSM� of the �rst set of queues and the second one the FSM of the second set
of queues� The ddrive signal when high shows that the second QM module drives the I�O pins
while the �rst QM module drives the I�O pins otherwise� The �ebit signal is the Free List
Empty Bit�
In �gures �
 and �� we can see how many cycles it takes for each instruction to �nish and

when a new instruction can be issued� Each square represents one cycle and on the right of
each sequence of squares we can see which instruction represents� Notice that after a retfree
instruction we cannot issue a new retfree or getfree instruction because the Free List Head and
Tail registers do not have the right value yet� Missing the right next cycle to issue a getfree or
retfree instruction� we are forced to issue a new instruction of this type � cycles later �at cycle
	�� This is a limitation set up by our architecture so as to accelerate more time consuming
instructions like the enqueue and dequeue� Another characteristic of the architecture which
is also re�ected in �gures �
 and �� is that no more that � instructions can be on the system
working at the same cycle� In other words the scenario of having an enqueue instruction followed
by a retfree instruction to an empty free list� followed by an enqueue instruction the right next
cycle will not execute correctly�

enq4 enq5enq2 enq3enq1dec0

enq4 enq5enq2 enq3enq1dec0 EnQ

get1 turndec0 get0

ret2dec0 ret1

GetFree

RetFree

EnQ

deq4deq2 deq3dec0 deq1 TOP

deq4 deq5deq2 deq3dec0 deq1 deq6 deq7 DeQ

deq4 deq5deq2 deq3dec0 deq1 deq6 deq7 DeQ

enq4 enq5enq2 enq3enq1dec0

deq4 deq5deq2 deq3dec0 deq1 deq6 deq7 DeQ

EnQ

get1 turndec0 get0

ret2dec0 ret1

GetFree

RetFree

deq4deq2 deq3dec0 deq1 TOP

Figure �
� Issuing instructions right after an enqueue or dequeue instruction

A�� The enqueue instruction

This command takes � arguments the queue number and the Slot number and returns whether
the queue was empty or not� It enqueues the Slot number on the back of the queue speci�ed
by the queue number� Enqueue succeeds even for empty queues for the purposes of MUQPRO
I �no translation between VP�VCs and queue numbers exists�� The EnQ implementation in C
follows�

unsigned int

EnQ�unsigned int �HTm�unsigned char �HTe�

unsigned int �PMm�unsigned int Slotn�unsigned int Qn�


�



enq4 enq5enq2 enq3enq1dec0

get1 turn GetFree

EnQ

ret2dec0 ret1 RetFree

deq4deq2 deq3dec0 deq1 TOP

deq4 deq5deq2 deq3dec0 deq1 deq6 deq7 DeQ

get1 turn GetFreedec0

dec0

enq4 enq5enq2 enq3enq1dec0

ret2dec0 ret1 RetFree

ret2dec0 ret1 RetFree

get1 turndec0 get0 GetFree

EnQ

deq4deq2 deq3dec0 deq1 TOP

deq4 deq5deq2 deq3dec0 deq1 deq6 deq7 DeQ

Figure ��� Issuing instructions right after a getfree or retfree instruction

�

unsigned int pTail�

if �HTe�Qn	

��

�

HTe�Qn	
��

HTm�Qn�	
Slotn�

HTm��Qn����	
Slotn�

�

else

�

pTail
HTm��Qn����	�

PMm�prevTail	
Slotn�

HTm��Qn����	
Slotn�

�

�

The number of micro�operations that this function includes are 
 as shown by the Code� Read
HTempty and check whether it is high or low� and 	 more in each of the two cases� Given the
��stage pseudo�pipeline these operations can be scheduled in the following way �also presented
in �gure ���� An example of enqueue in an empty and a non�empty queue for � slots and 

queues is presented in �gures ��� During cycle � we fetch the queue number �Qn� while the
other two stages remain idle�
During cycle � we fetch the slot number that will be enqueued �Slotn� and we calculate the

address to access the speci�c queue�s empty bit� Since the empty bit is packed together with the
tail pointer� in our implementation� we must compute the address of the ��!Qn � �� element
of the Head�Tail table structure� This is the Base Address of the structure plus the eective
address ��!Qn � ��� We do not access the external memory �SRAM� during this cycle�
During cycle � we access the SRAM to read the empty bit together with the tail of this

queue and we can compute another address� However we do not know whether we will read or
write the tail pointer at the following cycle because only at the end of the present cycle we will
have read the empty bit� Consequently the Address�Data Calculation stage remains idle�
Knowing whether the queue was empty or not� during cycle 	� we compute the address of

the tail pointer inside the Head�Tail table� Independently of the previous state of the queue
�empty or not� we also compute the data to be written� These are the slot number together

��



Addr , Data : idle
Access : idle

Fetch : Qn = Data

addr = Qn<<1+BAR_HT+1
Fetch : Slotn = Data

Access : idle

enq1

dec0

Addr , Data : idle
pTail = mem[addr]

Fetch : idle
enq2

enq3
Fetch : idle
data={0,Slotn}
Access : idle

empty non-empty

enq41

mem[addr]=data
addr = Qn<<1+BAR_HT

mem[addr]=data
addr = {0,pTail}+BAR_PM

enq42
Fetch : Qn = Data Fetch : Qn = Data

Fetch : Slotn = Data
Addr , Data : next instr
mem[addr]=data

Queue Manager Reads args

HT[tail]={0,Slotn}

HT[head]={0,Slotn} HT[pTail]={0,Slotn}

{empty,pTail}=HT[tail]

HT[tail]={0,Slotn}

Figure ��� Schedule for the EnQ command

with the empty bit having a � value� In this cycle also the Address�Data Calculation stage
remains idle� The Ready signal is driven high to inform the master device that next cycle it
can provide a new instruction�
During cycle 
 either of two things occur� depending on the previous state of the queue�

The queue was not empty� Having read the previous tail pointer �at cycle �� we write the
new value of the tail pointer� In addition we calculate the address of the previous tail
element which is the previous tail plus the Base Address of the Pointer Memory structure
�where the pointer �eld of each cell buer resides�� The data remain the same that were
calculated in the previous cycle� We also drive the Valid signal high and the E�NE signal
low to inform the master device that the queue was not empty and will remain this way�

The queue was empty� We write the same data at the same address as in the case that the
queue was not empty� The dierence is that we calculate the head pointer address which
is the Base Address of the Head�Tail table structure plus �!Qn� We also drive the Valid
and the E�NE signal high to inform the master device that the queue was empty but after
the completion of this instruction will not be any more�

Apart from these during this cycle a new command can be fetched together with its �rst
argument�
During cycle � a write occurs at the address computed during cycle 
 and the address and

data computed depend on the instruction issued at cycle 
�
Generally one new Enqueue instruction can be issued every 
 cycles which is the optimal

given a narrow memory that keeps all the necessary data structures� A stand�alone Enqueue
instruction requires � cycles to complete but during the last � cycles another instruction can

��



16

0

1

2

3

4

5

6

7 SR
A

M

8

9

10

11

1

2

3

4

5

6

7

8

65535

65535

65535

65535

12

13

14

15

65535

65535

65535

65535

Number of Queues:4
Number of Slots:8

FLt

FLe

2

7

FLh

0

Pointer memoryBase Address
Head/Tail table Base Address

Number of Queues:4
Number of Slots:8

FLt

FLe

2

7

FLh

0

Pointer memoryBase Address
Head/Tail table Base Address

16

0

1

2

3

4

5

6

7 SR
A

M

8

9

10

11

1

2

3

4

5

6

7

8

0

0

65535

65535

12

13

14

15

65535

65535

65535

65535

Number of Queues:4
Number of Slots:8

FLt

FLe

2

7

FLh

0

Pointer memoryBase Address
Head/Tail table Base Address

16

0

1

2

3

4

5

6

7 SR
A

M

8

9

10

11

1

2

3

4

5

6

7

8

0

1

65535

65535

12

13

14

15

65535

65535

65535

65535

Figure ��� Initial state of the queues� enqueue slot � in queue �� enqueue slot � in queue �

start its execution in parallel thanks to this pseudo�pipeline scheme� The delay can be reduced
by widening the interface between the Queue Manager and the master device so as to accept
� arguments and an instruction in one cycle� But this adds to the cost and it is not required
as long as the master can keep the Queue Manager occupied all the time� which is the case for
MUQPRO I� Notice also that only from cycle 
 we can issue a new instruction and not from
cycle �� This seems as a restriction at �rst glance but it does not aect the functionality of the
architecture and also simpli�es the control path greatly�
The timing diagrams for the two dierent cases of Enqueue� the �rst depicting an Enqueue

on a non�empty queue ��gure ��� and the second one an Enqueue on an empty queue ��gure
���� follow�

Figure ��� Enqueue instruction on a non�empty queue

��



Figure ��� Enqueue instruction on an empty queue

�	



A�� The dequeue instruction

This instruction takes � argument� the queue number� and returns the Slot number i�e� the
�rst entered element of the queue and whether the queue has become empty or not� The DeQ
implementation in C follows�

unsigned int

DeQ�unsigned int �HTm�unsigned char �HTe�

unsigned int �PMm�unsigned int Qn�unsigned int �valid�

�

unsigned int pHead�pTail�pPM�ret�val
��

�valid
��

if �HTe�Qn	

��

�

�valid
��

�

else

�

pHead
HTm�Qn�	�

pTail
HTm��Qn����	�

ret�val 
 pHead�

�valid 
 ��

if �pHead

pTail�

HTe�Qn	
��

else

�

pPM
PMm�pHead	�

HTm�Qn�	
pPM�

�

�

return ret�val�

�

This operation breaks down into � micro�operations if the queue is not empty and it has more
than one elements� � micro�operations if the queue is not empty and has exactly one element
and � micro�operations if the queue is empty� An example of the two cases of dequeue �dequeue
from a queue with more than one elements and dequeue from a queue with one element and
dequeue can be seen in �gure 	��
During cycle � we fetch the queue number and decode the instruction while the other stages

remain idle�
During cycle � we fetch the slot number that will be enqueued �Slotn� and we calculate the

address to access the speci�c queue�s empty bit� This address is computed in the same way as
in the EnQ instruction�
During cycle � we calculate the address of the head pointer of the queue which is the Base

Address of the Head�Tail table plus �!Qn and we also access the tail pointer of the queue �read
from SRAM��
During cycle 	 we compute no address and we read the head pointer of the queue if the

queue was not empty or return to idle state otherwise�
During cycle 
 we drive the Data bus with the head pointer we have read in the previous

cycle and we drive the Valid signal to �� In this cycle we also determine if the head and tail

�




Number of Queues:4
Number of Slots:8

FLt

FLe

2

7

FLh

0

Pointer memoryBase Address
Head/Tail table Base Address

16

0

1

2

3

4

5

6

7 SR
A

M

8

9

10

11

1

2

3

4

5

6

7

8

0

1

65535

65535

12

13

14

15

65535

65535

65535

65535

Number of Queues:4
Number of Slots:8

FLt

FLe

2

7

FLh

0

Pointer memoryBase Address
Head/Tail table Base Address

16

0

1

2

3

4

5

6

7 SR
A

M

8

9

10

11

1

2

3

4

5

6

7

8

0

1

65535

65535

12

13

14

15

65535

65535

65535

65535

Number of Queues:4
Number of Slots:8

FLt

FLe

2

7

FLh

0

Pointer memoryBase Address
Head/Tail table Base Address

16

0

1

2

3

4

5

6

7 SR
A

M

8

9

10

11

1

2

3

4

5

6

7

8

1

65535

65535

65535

12

13

14

15

65535

65535

65535

65535

Figure 	�� Initial state of the queues� dequeue from queue �� dequeue from queue �

pointers we have already read are equal or not� We could compute during this cycle the head
element address based on the head pointer we have already read but this would not improve
our latency due to the fact that the bus should not be driven during next cycle by the master
while the Queue Manager drives it during this cycle and no turnaround cycle exists between�
This is a good design methodology rather than a strict requirement�
During cycle � either of � things may occur depending if the head and tail pointers were

found equal�

Head and Tail pointers were found equal� We drive the E�NE signal together with the
Valid signals to �� We also compute the address of the tail pointer �in the same way we
mentioned in the Enqueue instruction� at the Head�Tail table and set the most signi�cant
bit of the computed data �which is the empty bit� to high� We also drive the Valid and
the E�NE signal high to indicate that the queue became empty�

Head and Tail pointers were not found equal� We compute the address of the head el�
ement which results from the head pointer already read plus the Base Address of the
Pointer Memory structure� We also drive the Valid signal high and the E�NE signal low
to indicate that the queue has not became empty�

In both cases above no memory accesses occur� The Ready signal is driven high to indicate
that at the next positive edge of the clock a new instruction can be issued�
During cycle � one of two things occur�

Head and Tail pointers were found equal� We simply write the pre�computed data at the
pre�computed address and fetch a new instruction together with its �rst argument �if it
has one�� The data written are actually the empty bit set to high to indicate that the
queue became empty�

Head and Tail pointers were not found equal� We compute the address of the head pointer
which results from �!Qn plus the Base Address of the Head�Tail table� In addition we
read the head element with the address computed in the previous cycle�

During cycle � we write what has been computed in previous cycle in case Head and Tail
pointers were not found equal or otherwise we do not access memory� We also compute an
address speci�ed by the instruction issued at cycle � �if one has been issued� and we fetch a
second argument if one exists �e�g� in the case of the Enqueue instruction��

��



Addr , Data : idle
Access : idle

Fetch : Qn = Data

addr = Qn<<1+BAR_HT+1
Fetch : Slotn = Data

Access : idle

dec0

Queue Manager Reads args

deq1

Fetch : idle
addr = Qn<<1+BAR_HT
pTail = mem[addr]

deq2

deq3
Fetch : idle

pHead = mem[addr]
Addr , Data : idle

Fetch : idle
Addr , Data : idle
Access : idle
pHead?=pTail

deq4

deq51 deq52
Fetch : idleFetch : idle

Access : idle Access : idle
addr = pHead+BAR_PM

empty
dec0

!==

deq61 deq62

mem[addr]=data data=mem[addr]
addr = Qn<<1+BAR_HT
Fetch : Qn = DataFetch : Qn = Data

addr = Qn<<1+BAR_HT

addr = Qn<<1+BAR_HT+1
data={1,X}

deq72

mem[addr]=data

Fetch : Slotn = Data Fetch : Slotn = Data
Addr,Data:nxt instr
Access:nxt instr

Addr,Data:nxt instr

deq71

{empty,pTail}=HT[tail]

pHead=HT[head]

HT[tail]={1,X}

data=PM[phead]

HT[tail]=PM[phead]

Figure 	�� Schedule for the DeQ instruction

A few important hints� First notice that the Dequeue instruction has one case that something
read from the memory must be written the right next cycle �cycles � and ��� This causes no
problem because what is read from memory goes into an edge�triggered register it is available
for write back to memory from the beginning of next cycle� What would cause a serious problem
is what read from memory in one cycle be used as an address during the right next cycle� This
is because address calculation is a stage that requires and addition and a �passing� from a large
multiplexor which is a critical path in the design� A requirement we took into account is to avoid
the driving of the bus by the Queue Manager and the controller in subsequent cycles� Given
these restrictions we ended up with this scheduling that allows the issue of one new Dequeue
instruction every � cycles and a reply �answer� the fourth cycle after the issue of a Dequeue�
Everything discussed above is displayed in �gure 	�� The timings in the three dierent cases
of a Dequeue instruction �i�e� dequeue from an empty queue� dequeue from a queue with only
one element and dequeue from a queue with more than one elements� are presented in �gures
	��		�	
�

��



Figure 	�� Dequeue instruction on an empty queue

Figure 		� Dequeue instruction on a queue with exactly one element

��



Figure 	
� Dequeue instruction on a queue with more than one elements

��



A�� The getfree instruction

GetFree takes no arguments and returns a free Slot number i�e� an available address at the cell
bodies memory� The C code implementation follows�

unsigned int

GetFree�unsigned int �FLh�unsigned int �FLt�unsigned char �FLe�

unsigned int �PMm�unsigned int �valid�

�

unsigned int pPM�ret�val�

�valid 
 ��

if ��FLe

��

�

ret�val
��

�

else

�

ret�val
�FLh�

�valid 
 ��

if ��FLh

�FLt�

�FLe
��

else

�

pPM
PMm��FLhead	�

�FLh
pPM�

�

�

return ret�val�

�

In �gure 	� we can see an example of getting a free slot from a Free List with more than one
elements and then getting a free slot from a Free List with exactly one element�

16

0

1

2

3

4

5

6

7 SR
A

M

8

9

10

11

1

2

3

4

5

6

7

8

65535

65535

65535

65535

12

13

14

15

65535

65535

65535

65535

Number of Queues:4
Number of Slots:8

FLt

FLe

0

7

FLh

0

Pointer memoryBase Address
Head/Tail table Base Address

16

0

1

2

3

4

5

6

7 SR
A

M

8

9

10

11

1

2

3

4

5

6

7

8

65535

65535

65535

65535

12

13

14

15

65535

65535

65535

65535

Number of Queues:4
Number of Slots:8

FLt

FLe

1

7

FLh

0

Pointer memoryBase Address
Head/Tail table Base Address

16

0

1

2

3

4

5

6

7 SR
A

M

8

9

10

11

1

2

3

4

5

6

7

8

65535

65535

65535

65535

12

13

14

15

65535

65535

65535

65535

Number of Queues:4
Number of Slots:8

FLt

FLe

7

7

FLh

0

Pointer memoryBase Address
Head/Tail table Base Address

Figure 	�� Initial state of the queues� getfree� getfree

During cycle � we compare the register that points at the head of the Free List structure
�FLh� with the one that points at the tail �FLt� and we compute the address of the head

��



element� There are three choices� Either Free List is empty� or it is not empty and the head
and tail pointers are equal or not equal�
During cycle � we drive the E�NE signal with the result of the comparison between FLh

and FLt and we execute one of these�

Free List is empty� We return to idle state�

Free List has exactly one element� Flip the Free List empty bit to high and drive the Data
bus with the Free List head value�

Free List has more than one elements� Drive the Data bus with the Free List head value
and read the head element whose address has been computed in the previous cycle� The
data that are being read during this cycle are written at the Free List head register�

During cycle � nothing is done� we use this cycle only as a turnaround between subsequent
drives of the Data bus by the controller and the Queue Manager�
All the operations are presented in �gure 	� that follows�

dec_0

get11 get12

Turnaround cycle

Access : idle
addr = FLh + BAR_PM
FLh ?= FLt
Fetch :  Qn=Data

empty dec_0

non-empty & !=non-empty & =

Fetch : idle

Access : idle
FLe = 1 , Data=FLh

FLh = mem[addr]
Data=FLh
Fetch : idle

dec_0

turn

Figure 	�� Schedule for the GetFree instruction

The timings in the three dierent cases of a GetFree instruction �i�e� getfree from an empty
queue� getfree from a queue with only one element and getfree from a queue with more than
one elements� are presented in �gures 	��	��	��

A�� The retfree instruction

It takes as an argument a Slot number and returns it internally to the Free List structure� The
C code that implements it follows�

unsigned int

RetFree�unsigned int �FLh�unsigned int �FLt�unsigned char �FLe�

unsigned int �PMm�unsigned int Slotn�

�

unsigned int ret�val�

if ��FLe�

�

�FLh
�FLt
Slotn�

��



Figure 	�� GetFree instruction on an empty queue

�FLe
��

ret�val 
 ��

�

else

�

ret�val 
 ��

PMm��FLtail	
Slotn�

�FLt
Slotn�

�

return ret�val�

�

In the following �gure 
� we present the various structures in the case we return a free slot to
the Free List and the List is empty and in the case we return a free slot to the Free List that
is not empty�
During cycle � we fetch the slot number and decode the command while the other stages

remain idle�
During cycle � we can issue a new command together with its �rst argument and execute

one of the following�

Free List was empty� Load Free List head and tail registers with Slotn and compute a new
address which is the address of the head element of the Free List �Base Address of Pointer
memory plus Slotn��

Free List was not empty� Compute the address of the tail element of the Free List �Base
Address of Pointer memory plus Free List tail register� and load Free List tail register
with Qn� In addition we load the data register with Slotn�

During cycle � the second argument of the new command �issued in cycle �� can be fetched
and we write in the SRAM the data at the address both computed at the previous cycle� This

��



Figure 	�� GetFree instruction on a queue with exactly one element

is the case if Free List was not empty� Otherwise no write occurs�
All the operations are presented in �gure 
� that follows�
The timings for the two dierent cases of retfree� the �rst depicting a retfree on a non�empty

queue ��gure 
�� and the second one a retfree on an empty queue ��gure 
	�� follow�

��



Figure 	�� GetFree instruction on a queue with more than one elements

16

0

1

2

3

4

5

6

7 SR
A

M

8

9

10

11

1

2

3

4

5

6

7

8

65535

65535

65535

65535

12

13

14

15

65535

65535

65535

65535

Number of Queues:4
Number of Slots:8

FLt

FLe

2

7

FLh

0

Pointer memoryBase Address
Head/Tail table Base Address

16

0

1

2

3

4

5

6

7 SR
A

M

8

9

10

11

1

2

3

4

5

6

7

8

65535

65535

65535

65535

12

13

14

15

65535

65535

65535

65535

Number of Queues:4
Number of Slots:8

FLt

FLe

5

5

FLh

0

Pointer memoryBase Address
Head/Tail table Base Address

Number of Queues:4
Number of Slots:8

FLt

FLe

5

3

FLh

0

Pointer memoryBase Address
Head/Tail table Base Address

16

0

1

2

3

4

5

6

7 SR
A

M

8

9

10

11

1

2

3

4

5

3

7

8

65535

65535

65535

65535

12

13

14

15

65535

65535

65535

65535

Figure 
�� Initial state of the queues� retfree slot � retfree slot

�	



Access : idle

dec_0

Fetch :  Qn = Data
Addr , Data : idle

r_11 r_12

r_22{1-6}

empty non-empty

Fetch :  Qn = Data

FLe=0 , FLh = FLt = Qn

Fetch :  Qn = Data
FLt = Qn

data = Qn

mem[addr] = data

Fetch :  Slotn = Data
Addr , Data : nxt instr

Fetch :  Slotn = Data
Addr , Data : nxt instr
Access : idle

r_21{1-6}

FLh=FLt=Qn

PM[FLt]=FLt , FLt=Qn

addr = FLh + BAR_PM addr = FLt + BAR_PM

Figure 
�� Schedule for the RetFree command

Figure 
�� Retfree instruction on a non�empty queue

�




Figure 
	� Retfree instruction on an empty queue

A�	 Initialization

The initialization process is required to set all the structures at the proper starting values� In
other words all structures must have a dedicated address space inside the SRAM� the Free List
structure must be full with all available slots and all the queues must be marked empty� The
Init instruction takes 
 arguments starting at cycle �� The Base Address of the Pointer Memory�
the size of the Pointer Memory� the Base Address of the Head�Tail table and the size of the
Head�Tail table in this order� No hardware exists for checking that the addresses passed to
the Queue Manager are valid� A small C program is provided to do this job and help in the
computation of these addresses� The init instruction is very time consuming because it has to
write all the Pointer Memory in order to link the slots in a long chain and make Free List head
register point at �� the Free List tail register point at N�� and drive the Free List empty �ip��op
low� In addition this instruction writes all the Head�Tail table with ��s so as all the queues
are empty at startup� In �gure 

 we can see an initialization example for 
 queues and � slots
while in �gure 
�� 
�� 
� we can see the timing diagram of initialization process for the same
number of queues and slots�

A�� Read instruction

Read takes � argument which is the address of the SRAM to be accessed and returns the content
of this address� It is only used for debugging purposes� It has no optimizations to keep the
control path simple and avoid aggravating the complexity of the Queue Manager� The timing
diagram of this instruction is presented in �gure 
� that follows�

A�� Write instruction

Write takes � arguments which are the address of the SRAM to be accessed and the data to
be written and returns OK� It is only used for debugging purposes� It has no optimizations to

��



16

0

1

2

3

4

5

6

7 SR
A

M

8

9

10

11

1

2

3

4

5

6

7

8

65535

65535

65535

65535

12

13

14

15

65535

65535

65535

65535

Number of Queues:4
Number of Slots:8

FLt

FLe

0

7

FLh

0

Pointer memoryBase Address
Head/Tail table Base Address

Figure 

� Initialization example for 
 queues and � slots

keep the control path simple and avoid aggravating the complexity of the Queue Manager� The
timing diagram of this instruction is presented in �gure 
� that follows�

��



Figure 
�� Timing diagram I of Init instruction

Figure 
�� Timing diagram II of Init instruction

��



Figure 
�� Timing diagram III of Init instruction

Figure 
�� Timing diagram of Read instruction

��



Figure 
�� Timing diagram of Write instruction

��



A� Top instruction

Takes as argument the queue number and returns the top element of this queue� It uses the same
control logic that is used by the dequeue instruction� The timing diagram of this instruction is
presented in �gure �� that follows�

Figure ��� Timing diagram of Top instruction

A�� CreateQ

CreateQ does not seem to have any use in the MUQPRO I� However� it will be required in future
implementations where a VP�VC to queue number translation exists� It takes � argument which
is the VP�VC� reserves a queue number and returns this �reserved� queue number�

A��� DeleteQ

DeleteQ does the inverse of what CreateQ does� It releases a queue number and returns OK�

B Datapath of MUQPRO I QM module

The datapath of the QM module is presented in �gure ��� Notice that the critical path is the
one starting from a register �Src�� Src� etc�� passing from the ADDR mux and the BAR add
and ending in the Saddr register which provides the address to the external SRAM chip� The
path to the SData register which provides the data to the SRAM is more relaxed because it
passes from only one medium�sized multiplexor� The CONTROL unit generates all the enable
signals for the registers and the select signals of the multiplexors� Thus another not so obvious
critical path lays between the CONTROL unit and the datapath� The CONTROL unit is
described in appendix A where for each instruction a sequence of operations each taking one
cycle to complete is analyzed� The control path is pretty complicated due to the variable size
of each instruction� For example a getfree can take either one cycle when the Free List is empty

��



or 	 cycles in any other case� The path between the generation of the control signals and the
datapath is also critical and created problems in achieving the desired clock frequency�

+

SData(16)

MUX

Reg

RegReg Reg

MUX

C
ou

nt

MUX

=

=

Reg

MUX

Reg

MUX

Reg

CONTROL

Re
ad

y
Sw

e

Va
lidE_

NE
pT

ai
l

B
A

R
_H

T

Data(16)

SA
dd

r(1
6)Sa

dd
r

B
A

R
_P

M

MUX

pH
ea

d

S_
PM

S_
H

T

Sr
c2

Sr
c1

A
D

D
R

_m
ux

B
A

R
_m

ux
B

A
R

_a
dd

A
D

D
R

_c
nt

Sd
at

a

Sd
at

a_
m

ux

da
ta

_m
ux

FL
h_

eq
_F

L
t

H
ea

d_
eq

_T
ai

l

H
T

eR
E

S=
pT

ai
l[

15
]

FL
eb

it

pH
ea

d

FL
e

re
se

t
se

t

FL
h

FL
t

FL
h_

m
ux

FL
t_

m
ux

tm
pF

L
h

tm
pF

L
h

A
D

D
R

_c
nt

 +
 1

{0
,S

rc
2[

14
..0

]}

Sr
c1 V

C
C

G
N

D

Sr
c1

Sr
c1 S_

PM
-1

Sr
c1

<
<

1+
1

Sr
c1

<
<

1
pT

ai
l

pH
ea

d
FL

t
FL

h
Sr

c1

Figure ��� The Datapath that implements these operations

��



C The �fully scalable� implementation datapath

+

SD
at

a(
16

)

M
U

X

R
eg

R
eg

R
eg

M
U

X

R
eg

R
eg

M
U

X

R
eg

R
eg

R
eg

=

M
U

X

M
U

X

M
U

X
M

U
X

M
U

X

R
eg

M
U

X R
eg

R
eg

M
U

X

Reg

+

2 Qn[13..0]00

000Qn[15..3]
pTail[14..0]0
Qn[13..0]00
pHead[14..0]0
FLh[14..0]0
FLt[14..0]0

pHead

pTail

pPM

1
pPM

R_HTe

BAR_HT

BAR_HTe

D
_I

/O
(1

6)

SAddr(16)

OP(4)

data

addr BAR_PM

Slotn

Qn

L_HTe

L_HT

L_PM

Fetch StageAddress/Data Stage

pHead

FLh

OutReg

1
0

1
0

Slotn

.

16 ............

{CS,OE,WE,BE}(5)

Valid(1)

Ans(1)

pTail

pHead
FLh

FLt

FLh
Qn

FLt
Qn

M
U

X

to ctrl

FLe

reset
set

R_HTe[15]

R_HTe[0]

Read/Write Stage

Figure ��� The Datapath of the �fully scalable� implementation

��



D The �fully scalable� implementation control path

Addr , Data : idle
Access : idle

Fetch : Qn = D_IO

addr = Qn>>3  +  BAR_HTe
Fetch : Slotn = D_IO

Access : idle

EnQ

Fetch : idle

e_1

dec_0

Fetch : idle

addr = Qn<<2 + 2 + BAR_HT

data = R_HTe[7..(Qn[2..0]+1)]

addr = Qn>>3 + BAR_HTe
mem[addr]=data

e_42

e_2

Fetch : Qn = D_IO

R_HTe = mem[addr]
data=Slotn

Fetch : idle
addr = Qn<<2 + BAR_HT
mem[addr]=data

e_32

!HTe HTe

addr = Qn<<2 + 2 + BAR_HT
data=Slotn
pTail=mem[addr]

e_31

Fetch : Qn = D_IO

mem[addr]=data

addr = pTail<<1 + BAR_PM
data=Slotn

e_41

Fetch : Slotn = D_IO
mem[addr]=data Fetch : Slotn = D_IO

mem[addr]=data

0 R_HTe[(Qn[2..0]-1)..0])

addr = Qn>>3  +  BAR_HTeEnQ :
addr = Qn>>3  +  BAR_HTeDeQ :

GetFree :addr = FLh<<1 +  BAR_PM
FLe ? idle
(!FLe & =) ? g_11
(!FLe & !=) ? g_12RetFree & FLe:

RetFree & !FLe:
FLe=0 , FLh=FLt=Qn

NOP : => idle

e_51{1-6}
e_52{1-6}

Fetch stage

{Address , Data}  stage

Read/Write stage

Extra optimizations can be applied

QM I/F reads 

QM I/F writes

EnQ

=> e_2
=> d_2

=> idle
FLh ?= FLt

FLt=Qn => r_22addr = FLt<<1 + BAR_PM , data=Qn

Figure �	� Schedule for the EnQ command

Fetch stage

{Address , Data}  stage

Extra optimizations can be applied

QM I/F reads 

QM I/F writes

Read/Write stage

dec_0

GetFree & FLe idle

GetFree & !FLe & = GetFree & !FLe & !=

FLh = mem[addr]

FLe = 1 , D_IO=FLh D_IO=FLh
g_11 g_12

g_2

Turnaround cycle

idle

Access : idle
addr = FLh<<1 + BAR_PM
FLh ?= FLt
Fetch nxt:  Qn = D_IO

GetFree

addr = Qn>>3  +  BAR_HTeEnQ :
addr = Qn>>3  +  BAR_HTeDeQ :

GetFree :addr = FLh<<1 +  BAR_PMFLh ?= FLt
FLe ? idle
(!FLe & =) ? g_11
(!FLe & !=) ? g_12RetFree & FLe:

RetFree & !FLe:
FLe=0 , FLh=FLt=Qn

NOP : => idle

=> e_2
=> d_2

=> idle
addr = FLt<<1 + BAR_PM , data=QnFLt=Qn => r_22

Figure �
� Schedule for the GetFree command

�	



Fetch stage

{Address , Data}  stage

Read/Write stage

Extra optimizations can be applied

QM I/F writes

QM I/F reads 

Addr , Data : idle
Access : idle

addr = Qn>>3  +  BAR_HTe
Fetch : idle

Access : idle

DeQ

Fetch : idle

d_1

dec_0

Fetch : idle

addr = Qn<<2 + BAR_HT

d_2

!HTe

addr = Qn<<2 + 2 + BAR_HT

Fetch : Qn = D_IO

R_HTe = mem[addr]

pHead=mem[addr]

Fetch : idle
addr = pHead<<1 + BAR_PM
pTail=mem[addr]

d_4

d_3

d_5
pHead ?= pTailFetch : idle

pPM=mem[addr] d_62

=

!=

Access : idle

data = R_HTe[7..(Qn[2..0]+1)]
addr = Qn>>3  +  BAR_HTe

d_61

Fetch : Slotn = D_IO

Fetch : Slotn = D_IO

mem[addr]=data1 R_HTe[(Qn[2..0]-1)..0] 

HTe idle

addr = Qn>>3  +  BAR_HTeEnQ :
addr = Qn>>3  +  BAR_HTeDeQ :

GetFree :addr = FLh<<1 +  BAR_PMFLh ?= FLt
FLe ? idle
(!FLe & =) ? g_11
(!FLe & !=) ? g_12RetFree & FLe:

RetFree & !FLe:
FLe=0 , FLh=FLt=Qn=> idle
FLt=Qnaddr = FLt<<1 + BAR_PM , data=Qn

NOP : => idle

d_71{1-6}

d_72{1-6}

DeQ

=> e_2
=> d_2

=> r_22

Fetch : Qn = D_IO

Fetch : Qn = D_IO
mem[addr]=dataaddr = Qn<<2 + BAR_HT

data = pPM
Access : idle

Address: idle

Figure ��� Schedule for the DeQ command

Fetch stage

{Address , Data}  stage

Read/Write stage

QM I/F writes

QM I/F reads 

Extra optimizations can be applied

Access : idle

dec_0

Fetch :  Qn = D_IO

RetFree & !FLeRetFree & FLe

Addr , Data : idle

addr = FLt<<1 + BAR_PM

mem[addr] = data

data = Qn

FLt = Qn

RetFree

Fetch :  Qn = D_IO
FLe=0 , FLh = FLt = Qn
Fetch :  Qn = D_IO

addr = FLh<<1 + BAR_PM

r_11 r_12

{idle,r_11,r_12,g_11,g_12,d_1,e_1} Fetch :  Slotn = D_IO
r_22{1-6}

addr = Qn>>3  +  BAR_HTeEnQ :
addr = Qn>>3  +  BAR_HTeDeQ :

GetFree :addr = FLh<<1 +  BAR_PMFLh ?= FLt
FLe ? idle
(!FLe & =) ? g_11
(!FLe & !=) ? g_12RetFree & FLe:

RetFree & !FLe:
FLe=0 , FLh=FLt=Qn=> idle

NOP : => idle

=> e_2
=> d_2

=> r_22addr = FLt<<1 + BAR_PM , data=QnFLt=Qn

Figure ��� Schedule for the RetFree command

�




E The �fully parallel� implementation data and control path

C
ou

nt
er

0
1
2
3

+1

1

0

0

1

co
m

pa
ra

to
r

0

1 co
m

pa
ra

to
r

Q_id 3

Clk
11

1xxxxxxxxxx

HTdataSlot 5

5

HTdata_in

PMdata_in 5

11

SlotR
(0,SlotR,SlotR)

Q_idR

prevHead

prevTail

(0,prevHead,SlotR)

PMdata

dataCnt[3..0]
dataCnt

dataCnt

11

5

0

1
2
3
4

PMaddr

prevTail

dataCnt

FLhead

FLtail

prevHead

5

HTempty

Slot

FLhead

FLtail

HTcompar

FLhead FreeBuf

FLempty

set
reset

dataCnt initM

FLcompar
FLhead

FLtail

HTaddr

prevTail

prevHead

3

HTempty

5

5

1

Q management datapath

SlotR

prevPM

(0,prevPM,prevTail)

SlotR

prevPM

5prevHead Slot_out

FLempty

Panagiotis Karakonstantis

Op

version 0.2 - Buffers=32

Reset

number of Qs = 8-2/9/1997

Figure ��� The Datapath of the �fully parallel� implementation

��



enQ/deQ

HTaddr=Q_idR

HTwrite=PMwrite=0

enQ & HTempty

HTdata=(0,SlotR,SlotR)

PMwrite=0

HTwrite=1

HTaddr=Q_idR

PMaddr=prevTail

HTaddr=Q_idR

HTdata=(0,prevHead,SlotR)

PMdata=SlotR

HTwrite=PMwrite=1

enQ & !HTempty

Slot_out=prevHead

comp(prevHead,prevTail)

prevPM=PMdata_in

PMaddr=prevHead

PMwrite=0

deQ & !HTempty

HTaddr=Q_idR

HTdata=1X

HTwrite=1

validSlot=1

HTcompar

HTdata=(0,prevPM,prevTail)

validSlot=1

HTwrite=1

HTaddr=Q_idR

!HTcompar

PMwrite=0

PMaddr=FLhead

getfree

comp(FLhead,FLtail)

prevPM=PMdata_in

FreeBuf=FLhead

FLvalid=1

FLempty=1 FLhead=prevPM

FLvalid=1

FLtail=SlotR
FLhead=SlotR

FLempty=0
PMdata=SlotR
PMaddr=FLtail

PMwrite=1

FLtail=SlotR

FLcompar & !FLempty
FLcompar & FLempty

retfree & !FLempty

retfree & FLempty
reset

HTdata=1X

HTaddr=dataCnt

PMdata=dataCnt+1

PMaddr=dataCnt

HTwrite=1
PMwrite=1

Q management FSM

version 0.2

2/9/1997

initState

Panagiotis Karakonstantis

Figure ��� The FSM of the �fully parallel� implementation

��



References

��� D� Serpanos� �Communication Subsystems for High�speed networks� ATM requirements��
In Asynchronous Transfer Mode� Proceedings of TRICOMM��	� Raleigh� North Carolina�
pp� 	��	�� April ������ ���	�

��� H�E� Meleis and D�N� Serpanos� �Designing Communication Subsystems for High�Speed
Networks��

�	� M� Katevenis� D� Serpanos and E� Markatos� �Multi�Queue Management and Scheduling
for improved QoS in Communication Networks�� Proceedings of the European Multimedia
Microprocessor Systems and Electronic Commerce �EMMSEC����� Florence� Italy� Novem�
ber �����

�
� G� Kornaros� C� Kozyrakis� P� Vatsolaki and M� Katevenis� �Pipelined Multi�Queue Man�
agement in a VLSI ATM Switch Chip with Credit�Based Flow Control�� Proceedings of
the ��th Conference on Advanced Research in VLSI �ARVLSI����� pp� �����

� Univ� of
Michigan� Ann Arbor� USA� Sept� �����

��� Flavio Bonomi and Kerry W� Fendick� � The Rate�Based Flow Control Framework for the
Available Bit Rate ATM Service�� IEEE Network Magazine� Vol� �� No� �� March�April
����� pp� ���	��

��� Raj Jain� �Congestion Control and Tra�c Management in ATM Networks� Recent Ad�
vances and A Survey�� Proceedings of the 
th Int� Symposium on High�Performance Com�
puter Architecture �HPCA�
��

��� M� Katevenis� D� Serpanos and E� Spyridakis� �Credit�Flow�Controlled ATM for MP Inter�
connection�the ATLAS I Single�Chip ATM Switch�� Proceedings of the 
th Int� Symposium
on High�Performance Computer Architecture �HPCA�
�� pp� 
����� Las Vegas� Nevada
USA� February �����

��� Kung and R�Morris� �Credit�Based Flow Control for ATM Networks�� IEEE Network
Magazine� Vol� �� No� �� March�April ����� pp� 
��
��

��� IBM Corporation� �Algorithm for Managing multiple First�in� First�out Queues from a
single shared random�access memory�� IBM Technical Disclosure Bulletin� Vol�	�� No 	B�
August �����

���� SUN Microelectronics� �ATM����s single�chip ATM SAR�� Data Sheet� July �����

���� FORE Systems� �ForeRunner ASX����BX and ASX������� �����

���� ALTERA� �MAX�PLUS II Getting Started��

��	� ALTERA� �AHDL Manual��

��
� John David Carnaugh and Timothy J� Salo� �Internetworking with ATM WANs�� Min�
nesota Supercomputer Center Inc� December �����

���� M� Batubara and A� J�Mc Gregor� �An Introduction to B�ISDN and ATM�� MONASH�TR
�	��
� September ���	�

���� C�Kosak� D�Eckhardt� T� Mummert� P�Steenkiste� A� Fisher� �Buer Management and
Flow Control in the Credit Net ATM Host Interface�� School of Computer Science �
Carnegie Mellon University�

��



���� C� Brendan and S� Traw� �Hardware�Software Organization of a High�Performance ATM
Host Interface�� IEEE Journal on Selected Areas in Communications� Vol ��� No �� Febru�
ary ���	�

���� K�K� Ramakrishnan � �Performance Considerations in Designing Network Interfaces��
IEEE Journal on Selected Areas in Communications� Vol ��� No �� February ���	�

���� Tim Moors and Antonio Cantoni� �ATM Receiver Implementation Issues�� IEEE Journal
on Selected Areas in Communications� Vol ��� No �� February ���	�

���� Casoni� M�� and Turner� J� S�� �On the Performance of Early Packet Discard�� IEEE
Journal on Selected Areas in Communications� Vol ��� No �� June �����

���� ATM Forum� �ATM User�Network Interface Speci�cation V	���� ���


��


