
Improving the Management of Distributed Applications
in Cloud Environments

Chrysostomos Antoniadis
Computer Science Department

University of Crete
chranton@csd.uoc.gr

ABSTRACT
This paper presents my findings and the results of my
undergraduate thesis, which focused on improving the
management of distributed applications in cloud
environments with the use of Nagios Core system [1].

1. INTRODUCTION
The size of cloud environments is continuously growing
and the distributed applications are getting more and more
complex. So it is vital to have an effective way to manage
these systems 24x7. Our target is to automate the
management procedures and reduce the staff needed for
these operations. This has been achieved by using two
factors. The Nagios Core monitoring system which
provides hardware, software and network monitoring, and
the Smart Automated Management application (SAM).
SAM uses the results taken from the Nagios Core
monitoring procedure, analyzes the data, makes decisions
about the system's health and performs the needed actions
through its own management sequence. The main role of
SAM application is to detect and identify problems and
possible threats to the system, take the necessary messures
to solve them and keep the system operational.

It must be pointed out that Microsoft has its own automatic
management software called Autopilot [2]. We will
attempt a comparison between the two systems later on
this paper.

For the matters of this thesis an assumptions has been
made. The distributed web server we use is very small but
what we do can be also done to bigger clusters.

The paper is structured as follows: In section 2 the
functionality of Nagios Core system is briefly described.
In section 3 we present and describe the cloud
infrastructure. In section 4 we are going to describe in
detail SAM. In section 5 we compare SAM with
Microsoft's Autopilot. Finally, in section 6 our conclusions
are presented.

2. NAGIOS MONITORING SYSTEM

2.1 Nagios Core
Nagios Core is an open source computer system monitor,
network monitoring and infrastructure monitoring
software application. Nagios Core offers monitoring and
and the NRPE daemon runs the appropriate Nagios plugin

alerting for servers, printers, routers, switches, applications
and services. It alerts users when things go wrong and
alerts them again when the problem has been resolved. It
provides, among others, monitoring of network services
such as HTTP, SMTP, FTP and SSH, monitoring of host
resources such as processor load and disk usage, and
generally monitoring of anything that has the ability to
send collected data via a network to specifically written
plugins. Remote monitoring is provided via remotely-run
scripts via Nagios Remote Plugin Executor (NRPE) [3].

The hosts and the services that Nagios Core monitors, are
specified by the user. The data from the various checks is
stored in a text file rather than a database. This file is
named status.dat and it is the one that SAM uses to collect
the data it needs as described in section 4.

By default Nagios Core assumes that all hosts and services
that it monitors are in OK state. After a check is performed
there are four state possibilities, OK, WARNING,
UNKNOWN and CRITICAL. The checks are executed
periodically and every check returns some data that
accompanies the state. For example the HTTP check
returns the HTTP response code, the response time in
seconds and etc. In some services checks, the user can
define the values for the OK, WARNING and CRITICAL
state. This gives the flexibility to Nagios Core to operate in
various hardware scales, different systems, and also gives
the freedom to the user to adopt the checks in his own
targets.

2.2 NRPE
Nagios Remote Plugin Executor (NRPE) is a Nagios agent
that allows remote system monitoring, using scripts that are
hosted on the remote Linux/Unix systems. This is useful
when there is the need to monitor local resources/attributes
like disk usage, cpu load, memory usage, etc. on a remote
host. The NRPE addon consists of two pieces, the
check_nrpe plugin, which resides on the local monitoring
machine and the NRPE daemon, which runs on the remote
machine.

When Nagios Core needs to monitor a resource of service
from a remote Linux/Unix machine, it executes the
check_nrpe plugin and informs it which service needs to be
checked. The check_nrpe plugin contacts the NRPE
daemon on the remote host over an SSL-protected
connection

to check the service or resource. The results from the
service check are passed from the NRPE daemon back to
the check_nrpe plugin, which then returns the check
results to the Nagios Core process.

3. THE SETUP
The distributed application that is used in this thesis is a
Web Server running on four virtual machines. Each virtual
machine runs Crunchbang Linux [4], a lightweight Linux
distribution and emulates a server with a single cpu
processor running on 1GHz, and 512 MB of memory.

3.1 Cloud Infrastructure
SAM's cloud infrastructure consist of four virtual
machines each running Crunchbang Linux (See full setup
on Table 1). The virtual machines are running on Windows
7 on VMWare Player [5], connected on a local network
created by the player. On the first virtual machine Nagios
Core and Apache Tomcat [6] have been installed, and on
the other three virtual machines Apache server [7] and
NRPE daemon have been installed as well. The three
virtual machines will be referred as real servers or hosts or
simple servers.

VM Name VM IP Nagios
Segment

Service

Crunchbang-1 192.168.109.131 Nagios Core NAT

Crunchbang-2 192.168.109.132 NRPE Web Server

Crunchbang-3 192.168.109.133 NRPE Web Server

Crunchbang-4 192.168.109.134 NRPE Web Server

Table 1.

Nagios Core on Crunchbang-1 uses check_nrpe plugin to
monitor the resources and services on the remote servers.
NRPE daemon in each server sends the results back to
check_nrpe plugin where they are stored in status.dat file
as it has been mentioned before. The resources monitored
in every host are: CPU load, RAM usage, HTTP and TCP
services. Later on is described how the results are used by
SAM system to manage the web server.

3.2 Distributed Web Server
Crunchbang-2, 3 and 4 are the main parts of the web
server while on Crunchbang-1 a NAT service is
responsible to forward the external http requests to one of
the real servers (see Table 1).

NAT service has been implemented by a java servlet [8].
Every external request to the web server is redirected by
the servlet to one of the available real servers. It reads the
available hosts IPs from a file every five minutes and
selects one of them in a simple round robin format.

The time period the servlet uses to read the file is not
restricted and can be adjusted to the web server needs!
This also applies to the round robin format, as any
appropriate algorithm can be used.

After the redirection of the request, the selected real server
communicates directly with the client, until the end of the
session with no further interference by the NAT service
servlet.

4. SMART AUTOMATED MANAGEMENT
SAM is the tool for improving the management of
distributed applications in cloud environments. It is an
application which is responsible to analyze the data taken
from Nagios, make decisions about the health of the system
and perform the needed actions in order to maintain the
web server operational, despite the problems that may
occur and threaten the system.

SAM's first job is to read the data returned to Nagios by the
check_nrpe plugin through the status.dat file. From this file
it reads, beside the results, how many computers are part of
the cloud infrastructure (three in our example), their names,
their IPs, and finally which service corresponds to which
host. In general every time that SAM reads the status.dat
file, it also checks if a new real server has been added to
the infrastructure. The new server must be registered to
Nagios Core first.

After the initialization the first check of the system is
performed. A real server is considered healthy if the host
state and each of the service states that correspond to the
host have OK value. In the beginning every real server is
tagged as non healthy and non part of the web server. There
are two boolean variables in each host to keep this
information. After the check, every host who is healthy is
tagged as available to be part of the web server.

Thereafter SAM stores in a file, named info.txt, the names
and the IPs of the real servers that are available to be part
of the web server. Now the NAT service servlet can read
this list of the servers and redirect any http request to one
of them.

Then SAM waits for a five minute period. This period is
not restricted and it was chosen given the fact that Nagios
is set to perform a new check every three minutes. It is in
user's freedom to set it in any value that fits his
infrastructure.

When the waiting time period has passed SAM reads again
status.dat file as before and performs a new health check.
Now there are four possibilities. First a host who was
previously healthy is still healthy, second an unhealthy host
is still unhealthy and third a host who was previously
unhealthy is now healthy (apparently the problem he had
has been solved), and SAM tags the server as available to
the web server. The fourth and more interesting scenario is
when a host was healthy at the previous check but now
shows some sort of a problem. This means that the host
and/or one or more of the services have CRITICAL,
WARNING or UNKOWN status.

In this case the real server is not immediately tagged as
unhealthy but SAM acts as follows. SAM keeps a counter
for every host in the cluster. This counter increases by one
for every problem that occurs at each check. It also has a
max value. When the counter reaches half of it max value
the host is tagged as in critical face. This means that
something is going wrong and there is a serious threat

that may cause further problems to the web servers
functionality. First SAM determines which service has the
problem. If the CPU or the RAM load checks give the
faulting response, probably the workload is to high and
there are more HTTP requests than the host can handle. In
this case SAM adds one more real server to the web server
in order to have a better workload distribution. In other
cases SAM removes the server from the web server
replaces it with another available server and monitors its
behavior at the next checks. If the problem insists then
SAM attempts to restart the services. After this happens if
any of the problems still exist the counter continues to
increase and when it reaches its max value, SAM is
confident for a problem in the server and remotely reboots
it.

In general SAM adds to the web server one host more than
the detected threads. In the beginning there are zero
threads so only one real server is becoming part of the web
server. Obviously in the present system the number of real
servers is too small. Usually in distributed applications the
amount of the servers is significantly higher.

After every action to deal with a problematic situation, if
the threat disappears (the host and all of the services go
back to OK state), SAM resets the counter, removes the
critical tag, makes the real server available to the web
server and a new monitoring cycle begins.

One more case that SAM is trying to predict is when a host
is serving a very small number of requests and most of its
capabilities are unused and could be eventually used
somewhere else. For this reason there is one more check
script in Nagios Core which checks if the CPU load is very
low. If a WARNING state is returned repeatedly in a
number of checks, SAM removes the host from the web
server. Obviously there is at least one host part of the web
server besides the one SAM removes.

There is always the possibility that a real server is faulty
and SAM can not do anything to repair it. For example the
network path to the host has been interrupted and the host
is unreachable. Another example is in larger scale
infrastructures where a group of real servers communicate
with SAM through a router and this router is faulty and the
whole group has been cut of from the network. In these
cases human intervention is required in order to repair the
problem. For these reasons SAM, after a number of checks
and actions where the initial problem remains unchanged,
alerts the administrator through a log file where it records
and specifies the problem.

When a check begins to a real server the condition of the
server is checked first. It must be noted that SAM always
checks the condition to the services even if the host is not
in an OK status. This makes SAM act faster because the
counter mentioned before increases faster. SAM is also
constructed in such a way that in larger infrastructures
where the system is composed from smaller systems, it
only checks a host if its path is in a healthy condition. This
way it avoids unnecessary work. This is the reason why in
our web server SAM also monitors Crunchbang-1.

5. COMPARISON WITH MS AUTOPILOT
Autopilot is Microsoft's management software. It is
responsible for automating software provisioning and
deployment, system monitoring, and carrying out repair
actions to deal with faulty software and hardware.

Autopilot's core is consisted by the Device Manager, a
Watchdog service, a Deployment service, a Provision
service and a Repair service. There are also the Collection
service and the Cockpit, a visualization tool.

The Device Manager is a single strongly-consistent state
machine that stores the state that the system should be in,
without taking any repair actions himself. It uses a number
of satelite services with which it exchanges information in
order to keep the system consistent. The services report the
problem to the Device Manager without trying a repair
action. Autopilot then performs cosistensy checks and if
there is a problem it tells to repair services to take action.
SAM has the responsibility to detect a problem or a threat
and repair it as soon as posible. For repair actions it does
not use any other application than himself.

The Provision and the Deployment services ensure that
each computer is running the correct operating system
image and set of application processes. This happens
through the supply of a local service and a set of manifests
in every computer, in order to specify that the correct
services are installed and running. The manifests are used
for service configuration. In our system the administrator is
responsible to install, configure and ensure that the right
operating system and services are running in each
computer. During the SAM's management cycle if the
needed processes and services are not present in a
computer then the machine is not accepted to the cluster
and it is considered as in failure.

The Watchdog service detects software or hardware
failures and reports them to the Device Manager. The
watchdogs perform periodic checks in order to detect
problems or possible threats and report back to the Device
Manager via the watchdog protocol. Our system checks are
performed by the NRPE plugin. The NRPE scripts are the
respective watchdogs and they report to Nagios Core via a
simple text file.

The Repair service cooperates with the Device Manager to
recover from software or hardware failures. It periodically
asks the Devices Managers for computers in failure and
uses their management consoles to perform their requiret
repair action. SAM is resposible to detect a posible threat
ignites a repair thread for each machine in failure. We must
point out here that the unit of failure in Autopilot is a
computer or a network switch rather than a process. There
are no application-specific recovery actions. On the other
hand SAM's unit of failure is an application or a computer
but this is not absolut. It was chosen this way because of
the small web server size and for the purpouses of this
thesis.

The Collection Service and Cockpit passively gather
information about the running components and make it
available in real-time for monitoring the health of the
service as well as recording statistics for offline analysis.

The Cockpit specifically is a visualization tool that les
operators monitor one or more Autopilot clusters using
graphs and reports. Nagios Core uses his own graphic
environment that shows detailed informations for every
machine monitored. There are also graphs to show the
relationship between the system's entities.

Autopilot's components use a simple pull model to retrieve
information from the Device manager were the
components of our system exchange information throught
simple text files.

6. CONCLUSION
We have created a simple management tool in order to
automate monitoring, fault detection and repair procedures
in distributed applications in cloud environments. We use
the Nagios Core system with its NRPE plugin in order to
monitor a distributed web server. We have also created
Smart Automated Management, a software that uses the
results from Nagios Core in order to manage actively
manage the web server. Finally we compare our system
with Microsoft's Autopilot. Autopilot is a commercial,
advanced and sophisticated system but there are structure
and functional similarities with our system in key
components of the management procedure.

7. ACKNOWLEDGMENTS
I would like to thank professor Konstantinos Magoutis, for
giving me the opportunity to complete my bachelor degree
with this thesis, for his guidance and assistance that helped
me complete my project.

I would also like to thank Philip for providing his
computer for testing purposes.

A debt of gratitude is owed to Chrysi. Without her nothing
would be possible.

8. REFERENCES
[1] Nagios Core http://www.nagios.org/projects/nagioscore
[2] Michael Isard Autopilot: Automatic Data Center
 Management, April 2007.

[3] Nagios Remote Plugin Executor
http://exchange.nagios.org/directory/Addons/Monitorin
g-Agents/NRPE--2D-Nagios-Remote-Plugin-
Executor/details

[4] Crunchbang Linux http://crunchbang.org/
[5] VMware Player

http://www.vmware.com/products/player
[6] Apache Tomcat http://tomcat.apache.org/
[7] Apache Server http://httpd.apache.org/
[8] Jeremy Elson and Jon Howell Handling Flash Crowds
 from your Garage, USENIX Annual Technical
 Conference, 2008.

http://www.nagios.org/projects/nagioscore
http://httpd.apache.org/
http://tomcat.apache.org/
http://www.vmware.com/products/player
http://crunchbang.org/
http://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details
http://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details
http://exchange.nagios.org/directory/Addons/Monitoring-Agents/NRPE--2D-Nagios-Remote-Plugin-Executor/details

