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Abstract
In this document the design and implementation of WZBLK, a network block device for

commodity Ethernet LANs, is presented. WZBLK is a network block device implemented in
the Linux kernel. Concept, design and specific optimisations are described in depth. Finally
it is benchmarked against the industry standard, iSCSI, and is shown more performant under
the conditions of the test.

1 Introduction

1.1 Problem Definition - Motivation

Ongoing improvements in Ethernet, the most prevalent
commodity network technology, are promising link rates in
the range of 40-100 Gbps, matching those of highly expen-
sive specialised interconnects. From the perspective of a
storage soware system engineer, major challenges appear
when using Ethernet, even more concerning the usual com-
bination of Ethernet with TCP/IP, primarily because such
rates are stressing the limits of the CPU and the memory
controller’s bandwidth capabilities.

Commodity networking technology (Ethernet) has tradi-
tionally been lagging in speed advances compared to CPU
clock frequencies, as a result factors such as memory copies
and interrupt handling have not been an issue until lately
that CPU clock advances have mostly stalled, and develop-
ment paradigm has been shiing to taking advantage of
multiple CPU cores. It does not come as a surprise that most
traditional solutions are not designed to take advantage of
multiple cores, or multiple parallel links, and implemen-
tations have been mostly unoptimised regarding resource
utilisation.

Finally, a common way to achieve economy of scale in big
HPC (High Performance Computing) environments is to try
utilising multiple commodity links in parallel with the ul-
timate goal of presenting a single logical connection at the
application layer. With no support from the network, ei-
ther at its core (switches) or at its edge (NICs), and given
the current trends in multi-core CPUs, it is a major chal-
lenge to find a solution that scales good in both areas, i.e.
multi-core and multi-link utilisation.

1.2 Historical Overview

In the short history of computing the need for accessing re-
mote data has existed since almost the beginning. In both
personal and scientific computing there have been a mul-
titude of use cases with different requirements in perfor-
mance, reliability and ease of use.

Especially within the High Performance Computing (HPC)
community, the requirements have never seized to aug-
ment. Today enormous computer rooms provide space for
thousands of nodes, running applications demanding ac-
cess to PetaBytes of data.

For the purpose of accessing remote data, many different
protocols have been developed, custom APIs (Application
Programming Interfaces) and user-level abstractions, each
one featuring a different set of characteristics and trade-
offs. However the default way of accessing local data has al-
ways been the filesystem, and to take advantage of the net-
work each application must be separately redesigned and
refactored for that purpose, or the data must be fetched to
the local filesystem before, and sent back aerwards using
separate syncing tools, which imposes extra overhead and
is not always possible.

In order to take advantage of the multitude of existing pro-
grams designed to access data on local storage, abstractions
have been developed that allow transparent access to re-
mote storage, via performing standard system I/O (Input
/ Output) operations. ese abstractions generally fall into
two categories, (1) network filesystems and (2) network block
devices.

Network filesystems directly provide filesystem semantics,
i.e. a hierarchical tree of directories containing files with
data of arbitrary size, each one with a specific set of at-
tributes like type and permissions. It is a high level ap-
proach to the problem, and the most popular historically,
with successful examples like NFS and CIFS.

Network block devices on the other hand only provide the
semantics of a block device, i.e. read, write and seek over
a given amount of space. Due to this simplicity, it is most
times necessary to create and mount a filesystem on top of
it so that applications can have access to the remote data.
is low-level abstraction has only become popular lately,
with the most prevalent example being iSCSI. e imple-
mentation presented here, WZBLK, falls into this category.

e network back-end in both cases can be implemented
in a variety of ways, with the most important detail being
the communication protocol. Since reliability is a neces-
sity, TCP/IP is the obvious choice and is indeed used in both
NFS¹ and iSCSI.

1.2.1 Case Study: iSCSI

iSCSI is a protocol that specifies the encapsulation of SCSI
(Small Computer System Interface) over IP. SCSI commands
are carried on top of IP, allowing the connection of stor-
age devices (Targets) to servers (Initiators) over any net-
work distance without special cabling, but utilising existing
networking infrastructure. Since the SCSI commands are
largely unmodified, this network layer is plugged on top of

¹NFS can also be configured to connect over UDP/IP since it is implemented via Remote Procedure Calls (RPC), a protocol which handles retrans-
missions at a higher level.
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existing SCSI support in operating systems, thus allowing
the devices to be seamlessly managed as local ones.

1. Initiator is the name given to the client-side of an
iSCSI connection, i.e. the side that initiates the I/O
requests. It might be confusing since in the common
case the iSCSI Initiator is a server machine in a data-
center.

2. Target is the name that represents the server-side of
the connection, i.e. the one that replies to all requests
sent by the Initiator. For the iSCSI case the Target
is basically a machine with storage devices, which
upon reception completes the I/O requests to the ac-
tual block devices and notifies the sender.

Both Target and Initiator are usually implemented in so-
ware as a layer on top of the operating system SCSI or block
subsystem. However there exist expensive hardware imple-
mentations for both sides, that combine their power with
embedded TCP offload engines to overcome most perfor-
mance problems. [1] Only soware implementations have
been examined for the work presented in this paper.

e recent surge in popularity of iSCSI can be aributed
mostly to the increasing rates of networking speeds in Eth-
ernet and WiFi (802.11) equipment, creating the common
need for cheap but high performance storage servers. Stor-
age servers of Gigabit speeds and upwards today are con-
sidered commodity equipment and are found in frequent
use among consumers. And of course HPC needs are even
higher, as already discussed. Given such high requirements,
the simplicity of a network block device (like iSCSI) in com-
parison to a network filesystem (NFS) has been a primary
motive in the adoption of the former. e focus in perfor-
mance is prevalent [2] and indeed there has been a differ-
ence in speed due to a variety of factors. Today iSCSI is
implemented in most NAS and SAN devices, purely in so-
ware or with acceleration modules in hardware for enter-
prise grade devices [3], and is also implemented in soware
in most current operating systems, e.g. Linux, Solaris, Win-
dows.

As mentioned, iSCSI is leveraging TCP/IP as communica-
tion protocol. e TCP/IP protocol is designed to serve all
kinds of links from low to high latency, and from low to
high bandwidth as well, in the same computer room or at
the other end of the world. Despite its advantages, some
of the functionalities TCP/IP provides are mostly unneeded
to the simple idea of the network block device, for exam-
ple ordered delivery and stream oriented connections. In
addition TCP/IP is so widely used, from low-latency, high-
bandwidth to high-latency, low-bandwidth links, that it is
bound to show inefficiencies under certain conditions, like
the high bandwidth - low latency interconnects of modern
HPC clusters that today support transfer rates in the order
of 10 to 100 Gbps² which highly stress every component to
the limits.

In addition, the use of TCP/IP allows the protocol to be
transparently routed at the IP layer, giving the possibil-
ity of having the block devices far away from the system.
Nevertheless it is notable that iSCSI is mostly in use within
the same LAN, since any transient network errors that trig-
ger TCP retransmissions have devastating effect in perfor-
mance.

Finally, it must be clarified that in the end iSCSI does not
provide a filesystem to the Initiator, but only a block device.
It is the common case that a filesystem is created on top of
that block device, and usually that filesystem is generic and
network-agnostic. erefore it is not uncommon for the
filesystem to behave erratically in the case of TCP retrans-
missions and other major delays, which creates another ar-
gument for placing the Target within the same LAN as the
Initiator.

1.2.2 Emerging tenologies

Other relevant technologies that are currently on the rise
are ATA over Ethernet (AoE), and Fibre Channel over Eth-
ernet (FCoE).

e former boasts a very simple specification and is being
marketed towards personal or small-business consumers.
e laer inherits all the enterprise characteristics of Fibre-
Channel and is targeting mostly datacenters. ey both
encapsulate the respective block device protocols directly
over Ethernet. As a result they are not routeable at the IP
layer, however they overcome inefficiencies that iSCSI in-
herits from its dependence on the TCP/IP stack.

Both protocols are still far from enjoying the popularity and
wide acceptance that iSCSI has.

1.3 Introducing WZBLK

Although iSCSI has been serving the need for cheap and
performant storage up to Gigabit speeds very well, it has
not been coping well with recent advancements in technol-
ogy. e introduction of 40 Gbps and 100 Gbps Ethernet
and the ongoing commoditisation of 10 Gbps in combina-
tion with the wide availability of Solid State Storage, has
brought demand for very higher performance. We’ll try to
enumerate the reasons, most have been discussed above.

• TCP provides features like connection-oriented com-
munication and ordered delivery, that impose a bur-
den to the soware implementations for very high
rates, and are not really needed in the scaer/gather,
multiple request I/Omodel that a block device serves.

• IP allows routing the storage devices over the entire
Internet, which is contradictory to high-performance
needs in an office or datacenter network. Further-
more, possible packet loss in the network routers due

²1 Gbps == 109 bits per second see A.1
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to competition for bandwidth among different pro-
tocol stacks, leads to devastating performance prob-
lems in the network-agnostic filesystems created on
top of the iSCSI block devices. us, connecting to
iSCSI endpoints outside of LAN’s borders is already
being avoided.

• Link-level parallelism (e.g. via bonding interfaces)
is a common technique to further enhance network
performance by taking advantage of multiple com-
modity hardware instances. For it to happen trans-
parently though, it has to multiplex one TCP stream
to multiple links, which TCP/IP does not provision
for thus it is bound to the limitations of the generic
TCP/IP protocol stacks. (proven to not scale good by
our measurements)

• Multi-CPU parallelism is also a common technique

to enhance performance, since today advancements
in CPU clock speeds have mostly stalled and multi-
core CPUs are prevalent. TCP/IP is not friendly to
that concept either, especially given that transparent
usage of established APIs (e.g. Berkeley sockets) en-
courages synchronous handling of requests.

In short, Ethernet speed and cheap Solid State Storage (SSD,
see A.1) reaching the memory subsystem’s bandwidth lim-
its together with the need for exploiting multi-core and
multi-link parallelism for advancing performance, create
the need to architect a solution from the ground up able
to handle all these issues.

As a proof of concept that these issues can be dealt with ef-
ficiently using only commodity hardware, we implemented
WZBLK.

3



2 WZBLK Description

2.1 Tenologies used

2.1.1 Multiedge

WZBLK relies on Multiedge [4], a thin protocol that sits di-
rectly over Ethernet and provides reliable and scalable data
transfer.

Multiedge is essentially a reliable Ethernet transport pro-
tocol, designed to take advantage of multiple parallel links
with no support from the network infrastructure, and to
efficiently parallelise its work over multiple CPU cores [5]
[6].

RDMA (see A.1) protocols have the advantage that they do
not require significant buffering at the receiving NIC, as
data arriving can always be delivered to a specific mem-
ory buffer. However, they require some type of protocol
to agree in advance on the buffers used for communication
and their size, establishing in essence credit-based flow con-
trol for buffer management.

Another advantage of RDMA protocols has traditionally
been the zero-copy capability. e term zero-copy charac-
terises soware design, where data ismoved in-between ap-
plication buffers, but there is no actual copying performed
by the CPU. For this case involving network and storage de-
vices, it usually means that only DMA transfers take place,
either between the NIC and system’s RAM, or between the
storage controller and system’s RAM, but no extra RAM-to-
RAM copies. is has proven to be complex, especially on
the receiving side, meaning that special hardware support
has been used and that this feature is generally unavailable
with commodity Ethernet network interfaces.

e sender part of the protocol is straightforward since the
kernel context that initiates the send operation can also is-
sue the DMA to the NIC directly without any further con-
text switches, and block this context (thread) until comple-
tion.

e receiving side is significantly more complex, due to
the need of honouring RDMA semantics without perfor-
mance penalty. When a packet arrives, it usually carries
on its header the destination address, and needs to be writ-
ten directly there. Over commodity Ethernet network in-
terfaces, since controllers don’t support RDMA semantics,
the packet upon arrival can only be immediately transferred
to the next free buffer in the Rx ring (see A.1). e compli-
cation is that each arriving packet will simply use the next
available buffer, since the destination RDMA address can
only be determined aer the CPU parses the packet. us
each arriving packet will be transferred to a buffer in mem-

ory, however not the buffer specified by the RDMA proto-
col.

Multiedge solves this issue for user-space applications us-
ing a complex memory remapping and buffer replenishing
technique: Physical pages belonging to the NIC’s Rx ring
are swapped with the proper pages from the user-space
application. is swapping involves page table traversal
and modification, so that the physical page in the Rx ring’s
buffer is mapped to the process’s address space, the exist-
ing page in the process’s address space is unmapped, and is
finally put in the Rx ring and marked as free. It’s possible
that it also involves TLB flushing, though it’s avoided in the
common case.

For kernel-space usage, especially for I/O, there are further
issues faced that will be described later.

2.1.2 Violin

WZBLK also leverages the Violin [7] filesystem framework
to present a block device to the end user, allowing to trans-
parently access multiple block devices within the same Eth-
ernet LAN.

Violin [7] is a block-layer virtualisation framework within
the Linux kernel. Essentially it combines multiple block-
layer mechanisms into one, and ultimately exports the re-
sulting block device as /dev/violin1. New mecha-
nisms can easily be implemented by adhering to a simple
but powerful API capable of both synchronous and asyn-
chronous implementation.

Ultimately, Violin allows storage administrators to [8] [9]
create arbitrary, acyclic graphs that fully define the depen-
dency hierarchy of a complex storage system that would
be hard to create otherwise. Combining heterogeneous
devices within the same system or across different ones
is made feasible with relatively-simple, completely kernel-
space high performance module implementations. Exam-
ple Violin layers have already been implemented for func-
tions like RAID redundancy, block checksumming, network
transparency - the laer was used and extended as part of
WZBLK.

Overall, for WZBLK Violin provides a fully-featured ab-
straction layer that handles all possible block-layer combi-
nations of operations. As a result WZBLK implementation
does not care about the details of each operation, just dese-
rialises / serialises from the network all the relevant struc-
tures of the Violin API, and makes the respective calls.

2.2 WZBLK

2.2.1 Overview

4
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WZBLK, in summary, is a thin glue layer, between Multi-
edge [4], utilised as the communication protocol and Vio-
lin [7] block-layer virtualisation framework, which facili-
tates the integration of networking support to the exported
block device. With primary goal the saturation of today’s
fastest Ethernet network technology, it boasts simplicity in
order to achieve low overhead per operation and scalability
in both CPU cores and network links.

Multiedge [4], as described, is a thin protocol stack directly
on top of Ethernet that provides reliability. us WZBLK is
restricted to devices within the same Ethernet LAN but be-
cause of Multiedge’s design characteristics, WZBLK is in-
herently capable of scaling on multiple parallel links be-
tween two hosts thus providing link aggregation capability,
as well as scaling to multiple cores, which proves of great
importance given that current CPU technology is primarily
advancing in core count rather than clock frequency.

WZBLK presents zero-copy characteristics on most of the
data it transfers. Utilising technologies of high performance
Ethernet, like jumbo frames, and using a minimum transfer
unit of x86 architecture’s page size, i.e. 4 KB, which is also
the preferred block size for most filesystems, it is capable of
transferring data without unnecessary copies where possi-
ble.

e advantages of this approach have been measured in a
variety of experiments, where WZBLK is shown to consis-
tently surpass its competitors. Performance is shown in
many cases to be multiple times that of iSCSI, demonstrat-
ing scalability in utilisation of all the testbed’s resources,
including multiple 10 Gbps Ethernet links as well as multi-
ple cores.

2.2.2 Design and implementation

In a typical TCP/IP network block device implementation ³,
the client (Initiator) includes a layer below the block layer
that simply forwards I/O requests to the server (Target).
e Initiator sends either a read request (expecting data as
the reply to the request), or a write request together with
data (expecting a simple completion reply).

e Target typically uses a thread that blocks waiting re-
quests from the network, listening to the specific TCP/IP
socket. is thread receives all incoming I/O requests and
re-issues them to the block layer of the target system. us,
in the target system, all data crosses the memory hierarchy
at least twice, once from the Ethernet network adapter to
the listening thread’s address space, and another from there
to the storage devices (disks, SSDs etc). e target thread is

³NBD [10] being the simplest example, embedded in the Linux kernel source tree
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then notified via callback for its request and the data, in the
case of read request.

It is typical for the processing thread on the Target to be re-
ceiving a large number of outstanding requests as in high-
end I/O workloads all operations need to be asynchronous.
When the Initiator receives the response from the Target
- either a completion in the case of write or actual data in
the case of read - the network layer below the block de-
vice wakes up the kernel context that has issued the I/O
request, which in turn will complete the I/O all the way up
to userspace. So on the Initiator side, multiple concurrent
I/O operations can occur like on the Target side, with the
primary difference that they originate from different pro-
cess contexts, be it applications or kernel modules.

All of this is valid for WZBLK, with the major differentia-
tor being that it not built on top of TCP/IP but on top of
Multiedge network protocol, not using socket but RDMA
operations for efficient meta-data (request) transfers, and
pagelist operations (see 2.2.6) for transferring the actual data
with minimal overhead. Consequently, reduced CPU utili-
sation and I/O response time is achieved while leveraging
important aributes of Multiedge, like transparent utilisa-
tion of multiple network links, out-of-order request pro-
cessing and completion, and aggressive coalescing of net-
work interrupts.

Ideally, in a zero-copy design, the major burden to the mem-
ory subsystem should consist only of data transfers, in-
between the system and the network or storage controllers,
which are performed via Direct Memory Access (DMA)
and do not impose burden to the CPU. at is the case
for WZBLK, however, there is one exception that is very
hard to alleviate without specialised hardware, and RAM-
to-RAM copying of data has to be performed.

2.2.3 Data copy for data received on the Initiator

is case is on the Initiator, when read requests are sent,
and replies with the data are received from the network.
Due to the way Ethernet is designed, the network controller
does not know in advance neither the order in which the
packets will arrive nor the multitude of them, so it can only
perform DMA directly to a part of memory called the Rx
ring.

e complication is that when the completion with the data
arrives over the network, the NIC will store the pages re-
ceived, in the order received, in the Rx ring. On the Initiator
side a memory copy is needed, since the bio_req request
that is about to be completed already has a struct bio
(see 2.2.6) with the needed empty pages aached, as per
the Linux Kernel’s block layer requirements. ese pages
are decoupled from any mapping to virtual address space,
and that means the pages might be mapped to some user-
space buffer that initiated a read() operation, or might
be part of in-kernel read-ahead activity with no user-space
reserved address space, i.e. the pages are not mapped in

any process address space. In short: e only way to com-
plete the read I/O request, is to manually copy all data to its
reserved pages.

Our measurements have shown that this single copy im-
poses significant overhead for the CPU on Multiedge’s re-
ceiving threads at high rates (exceeding 1 GB/s). Multi-
edge’s scalable design alleviates this issue by having the
possibility for multiple receiving threads (currently 4 max-
imum defined as compile-time constant) performing the
copies. Each of the threads can deal with data arriving to
any of the available network interfaces.

See 4.2.1 for proposal on how to overcome this overhead.

2.2.4 Freeing memory on the Target, for sent data

A further complication is that freeing memory pages used
by the network layer is challenging for read requests. Af-
ter the Target has received the read request, it uses preal-
located pages to form a request and submit it to the bio
layer, and of course marks these pages as reserved. When
the I/O layer completes the request and data requested is
available in those pages, a network reply with this data is
sent to the Initiator, however these pages can not be freed
and returned to the preallocated pages pool. Reason is that
it may be the case that retransmission is needed, in the event
of packet loss or other network transient error, since Mul-
tiedge is a reliable protocol.

is is resolved by implementing a new feature in Multi-
edge, which enforces freeing of data pages when positive
acknowledgement of the specific or later Multiedge packet
arrives. is mechanism can be generalised to support call-
ing arbitrary functions on the event of verified delivery, but
this imposes further complexity since it involves passing a
hook down to the lowest layer of Multiedge.

2.2.5 Interrupt mitigation

A problem for Ethernet at over Gigabit speeds, is the over-
head induced by serving interrupts which typically occur
on a per-packet basis. When the rate of received packets
grows high, the kernel has to serve thousands, even mil-
lions of interrupts per second in order to receive them. Be-
sides the danger of dropping packets because of missed in-
terrupts, the overhead to the the CPU is too high, mostly
because of CPU time spent in the uninterruptible top half
interrupt handler (see A.1) and the constant context switch-
ing incurred because of this.

We handle this issue by taking advantage of interrupt mod-
eration which is a key feature of Multiedge. oting [4]
section 2.6 ”Reducing Overheads”:

e design of Multiedge tries to minimize in-
terrupts both in the send as well as the re-
ceive path in the following way: When an in-
terrupt arrives, the interrupt handler disables
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subsequent interrupts and notifies the protocol
layer. When the receive or send protocol path
is invoked by an interrupt handler, it processes
all pending interrupt related events, e.g. send
frame completions or newly received frames,
by polling each network interface. e proto-
col layer enables interrupts when there are no
more interrupt related events and no protocol
kernel thread is active.

2.2.6 Modifications with pagelists and simplifications
for kernel use

Performing an RDMA operation consists of transferring
data from a continuous region of local virtual address space
to a specific continuous region in remote process’s virtual
address space. However an I/O request to or from a storage
device typically consists of a scaer-gather list of memory
areas, not necessarily continuous. Furthermore, as men-
tioned (see 2.2.3) an I/O request does not necessarily con-
sist of pages mapped in any process’s address space, since
it is common for the kernel to initiate I/Os as part of read-
ahead operations, i.e. data which will be later used, or even
not used at all by user-space. is is made obvious from the
struct bio implementation in the Linux kernel, which
is a scaer-gather list describing the data of each I/O.
struct bio_vec {

struct page *bv_page;
unsigned int bv_len;
unsigned int bv_offset;

};
struct bio {

unsigned short bi_vcnt;
struct bio_vec *bi_io_vec;
/* ... various accounting fields ... */

};

As can be seen it is basically a list of physical pages, i.e.
struct page, completely decoupled from any virtual
address space mapping. Given that data received from the
network controller is put via DMA to unexpected (due to
Ethernet’s controller limitation) physical pages in system’s
RAM, there are basically two options for implementing the
RDMA operation: Either perform a separate RDMA opera-
tion for each memory page, or map the scaer-gather list at
some virtual address space, perform the RDMA operation,
and unmap in the end.

Both options are overly costly at high data rates, primar-
ily because data copying would still be necessary to fill the
proper physical pages that the struct bio was paired
with in advance, when the I/O operation was issued, and
secondly because of heavy page table traversal operations
that thrash the TLB.

Multiedge, having been originally designed for being used
from user-space applications specifically for RDMA pur-
poses, had to be ported for in-kernel use and had to be tuned
specifically for our use case, i.e. network to block layer

communication and vice-versa. Its original RDMA oper-
ation type is not being used for actual data but for transfer-
ring only metadata, i.e. requests. Data is being handled by
introducing a new type of operation, the pagelist transfer.
struct pglq
{

/* an array of PGLQ_SIZE preallocated
pagelists. */

struct page ***pgl;
/* tail+len is the head of the queue */
int tail, len;
/* bitmap showing if each pgl is used */
DECLARE_BITMAP(bitmap, PGLQ_SIZE);
struct completion comp;
struct mutex mtx;

};

A pagelist is equivalent to struct page ** essentially
a scaer-gather list of memory pages which correspond to
the blocks of data a request refers to, so that DMA can be
initiated without further processing, either to or from the
devices, for write or read requests respectively. During the
connection negotiation phase, a list of pre-allocated page-
lists is exchanged so that both Initiator and Target know
the total number and all relevant identification handles of
each other’s pagelists. At the Initiator, pre-allocation refers
solely to the list of pointers to pages, and not to the pages
themselves, as these are provided from/to the kernel per
each request’s context. At the Target the pagelists refer to
lists of pointers to pages, plus thememory pages themselves
(see 2.2.8 for the reasoning).

ese pages are separate from the ones in Multiedge’s net-
work Rx ring (see A.1), and serve the purpose of provid-
ing a supply of pages ready to replenish the Rx ring, where
data arrives in random order. As explained, they are the
exact amount that will be needed in worst-case scenario,
given that the Initiator knows in advance this amount and
will never overflow this area (credit-based communication).
With this strategy, remote I/O requests can be issued with
DMA transfers only and without RAM-to-RAM copies, in
most cases.

e pre-allocation and exchange of pagelists for each logi-
cal connection in WZBLK is a flavour of credit based flow-
control that leads to great simplifications both in the buffer
management implementation and at the protocol level.
More details on this subject are explained in the next sec-
tion (see 2.2.7).

2.2.7 No allocations are needed during operation

Given that the resources of each node are strictly deter-
mined and communicated once during the initial hand-
shake, and given that a storage resource is in use always
between exactly two nodes, Initiator and Target, with care-
ful design it is possible to avoid overflowing any of the two
nodes, so congestion of requests is a non-issue.

In particular, during the initial handshake, the following se-
quence of events takes place:
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Initiator Target
Blocking for connection

Open Multiedge connection to Target
Register memory region for RDMA
operations (mostly meta-data
transfers)
Block for notification of RDMA
operation

Register memory region for RDMA
operations (mostly meta-data|
transfers)
Allocate local pagelists (pointer to
pages), empty (pointing to NULL)
Send pagelists information via RDMA
operation
Block for notification of RDMA
operation

Receive and store remote pagelist
information
Allocate local pagelists, including
all physical pages
Send pagelists information via RDMA
operation

Receive and store remote pagelist
information
WZBLK ready WZBLK ready

All slots for requests are preallocated, and each end always
keeps account of free slots in both his own and the remote
pagelist queues.

In such way a major issue with Ethernet is alleviated: the
possibility that at any time data might arrive and network
ring will overflow does not exist. When the Initiator sends
a page-list it is known in advance that there is an already
allocated free page on the other side, and the same goes
in the other direction. at way if too many outstanding
I/O operations are taking place, the Initiator will automati-
cally withhold them until completions of previous requests
have arrived, thus slots are freed on the Target, and this will
cause blocking up to userspace, or cause an error in case the
user is utilising non-blocking I/O API.

In addition, generic allocations (kmalloc()) are avoided
during operation of WZBLK. ese allocations can be
overly expensive under memory pressure and can even fail
when the VM subsystem is under a lot of stress. On the
contrary handling our preallocated pages is fast since it
mostly involves scanning a small bitmap to reserve mem-
ory of given size (PAGE_SIZE), unlike the generic kmal-
loc().

2.2.8 VM page remapping

Multiedge boasts a complex page-remapping implemen-
tation (mentioned again in 2.1.1), in order to forward to
userspace all the data coming from the network via an

RDMA operation. In short, already mapped pages in the
address space of the process are being unmapped, and the
pages containing the data in the kernel’s RX ring are being
mapped to those virtual addresses. e pages unmapped
are being used to replenish the RX ring. See [6] section 3.2
”Context Independent Page Remapping” for full details.

As mentioned, WZBLK does not use RDMA operations for
data transfer since it is implemented in kernel-space and
most I/O operations involve unmapped physical pages (see
2.2.3). us, we completely disable the page-remapping
functionality and use a fairly simple procedure. As an
example, on the Target when a write request is received
accompanied with data, the following actions are taking
place:

1. on reception of the pagelist, all relevant pages are de-
tached from the RX ring and aached to a struct
bio.

2. e RX ring is replenished from the preallocated
pages pool. is is the reason that the Target needs
actual pages preallocated.

3. e I/O request, together with the aached pages, is
submied to the block layer according to the meta-
data received.

Nowhere in this path is a context-switch or a page table
traversal needed. As a result, most of Multiedge’s original
overhead, related to frequent TLB flushing because of page-
table modifications, is not an issue for WZBLK.
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3 Evaluation

3.1 Experiment description

3.1.1 Hardware setup

For this experiment we have set up two machines to play
the role of the Initiator and the Target. ey are both of
nearly identical characteristics: 4 AMD Opteron dual-core
CPUs, for a total of 8 cores per host. For network connectiv-
ity we equipped each host with 4 MyriCom 10 Gbps Ether-
net PCI-express NICs. ese 4+4 NICs are connected back-
to-back (no switch) between the two hosts and are dedicated
to our experiments, since we perform the necessary man-
agement activities through the on-board interfaces.

e only difference in hardware configuration is that the
Initiator machine is equipped with 4 GB of RAM while the
Target boasts 32 GB of RAM, for the purpose of having a
sizeable ramdisk as a block device to export, plus 8 Intel 32
GB SATA single-cell SSDs for exporting real block devices.

3.1.2 Execution

We want to measure low level performance of WZBLK. In
order to avoid application overhead and results differen-
tiation due to complex workloads, we choose to utilise a
micro-benchmark, zmIO.

zmIO [11] is a low level block device micro-benchmark. It
issues read orwrite (ormixed) I/O requests asynchronously,
using the Linux AIO API [12], with the ability to maintain
a given queue depth of submied incomplete requests.

To maximise the network bandwidth utilisation we experi-
mented with various setups for the exported block device at
the Target machine, including various ramdisk implemen-
tations, exporting multiple targets – one for each SSD, ex-
porting a single block device created via RAID-0 over all
SSDs etc. In all these setups it was common to oen iden-
tify as primary limiting factor either the total disk band-
width or even the system’s memory bandwidth (measured
using memstress [13] custom utility), and almost never
the network bandwidth which in our case is ample and the-
oretically surpasses 4 GB/s⁴.

A quick benchmark shows that it will not be easy to bring
our network setup to its limits. e following graph shows
throughput with read-only workload on the local RAM
drive, with no network involved, for various queue depths
(1, 4, 16 and 64) of outstanding I/O requests.
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us the results presented here involve special setup at the
Target that avoids reading or writing actual data. For iSCSI,
we use tgtd’s (see A.1) null back-end. For WZBLK we
export a block device created by ramdrv.ko (see A.1) RAM
drive, using its special no_memcpy option that avoids
copying any data to or from the ramdisk. Even though these
back-ends result in garbage data being read or wrien, thus
are useless for real use cases, they are a very good way of
stressing our implementation (and the iSCSI implementa-
tion as well) to the maximum. In fact they emulate a system
with very fast storage subsystem, since that would involve
no in-memory copies (only DMA transfers) for reads/writes
to the storage device, as opposed tomultiplememory copies
involved with a regular ramdisk.

3.1.3 Measuring iSCSI

Next we setup the Target machine’s four network interfaces
with different IP addresses and use tgtd’s null back-end [14]
to export four iSCSI targets, one on each network interface.
All four of them are mounted separately at the Initiator ma-
chine. is was the most performant way among other se-
tups tried, e.g. bonding all four interfaces and exporting a
single mount-point, or exporting 4 of them and using so-
ware RAID-0 on the Initiator to unite them to one block
device.

We use zmIO at the Initiator, configured to issue random
I/O requests concurrently to all remote block devices, using
request sizes of 4 KB to 4 MB and queue depths of 1 to 64
outstanding requests, measuring all possible combinations
in separate experiments. e results are presented in the
following graphs, including measurements for bandwidth,
IOPS (I/O Operations per second), Initiator and Target CPU
utilisation. Different curves have been drawn for varying
number of outstanding I/O requests. Results were similar
for both reads and writes, so only the former are shown.

⁴1 GB/s == 230 Bytes per second see A.1
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Multiple lines present the varying queue depths for out-
standing I/O operations It is notable that performance with
only one outstanding operation is low, but scales well while
increasing it up to 16 outstanding operations. Performance
also increases by increasing the I/O operation unit size (data
being transferred per I/O request) up to 256 KB. Neverthe-
less, e performance cap for tgtd seems to be around 700
MB/s and 100 K IOPS.

Further investigation of the complete accounting data of
the experiment reveals that this is not a limit imposed by
the iSCSI protocol itself, but most probably an inefficiency
of the tgtd implementation: the tgtd daemon on the Target
machine never utilisesmore than 120% of CPU (maximum is
set to 800% for all 8 cores), and even though there are mul-
tiple threads running, the boleneck seems to be always
at one thread which always utilises one core at 100%. is
was the case in all of our experiments, no maer which tgtd
back-end we used, or howmany mount-points we exported
(reminder: this experiment involves four, one per network
interface).

3.1.4 Measuring WZBLK

Next we present the relevant results for WZBLK. We create
the 28 GB ramdisk using the no_memcpy option of ram-

drv.ko (see A.1) and export it to the network. All four NICs
are not configuredwith any IP address asWZBLK usesMul-
tiedge, a thin protocol directly on top of Ethernet (see 2.1.1).
In addition no interface bonding or multiple mount-point
exports are needed as Multiedge is inherently capable of
scaling across interfaces. On the Initiator side we mount
the exported mount-point, which appears locally as /de-
v/violin1.

e set of results shown here present WZBLK configured
(via a compile-time constant) to use 4 threads for receiv-
ing data on the Initiator (full data is also available for 1 or
2 receiver threads configuration). is is the most perfor-
mant configuration because the extra memory copies tak-
ing place at the initiator are distributed amongmultiple pro-
cessor cores.

e two set of graphs that follow involve random reads and
random writes respectively. Each one shows throughput
measurements for random read/write operations of various
sizes (x-axis), continuously keeping a load of 1, 4, 16, or 64
outstanding operations (different curves). Each triplet of
graphs has its primary data on the top graph, with CPU us-
age (800% peakwhen all 8 cores are fully utilised) client-side
and server-side ploed on the two boom graphs.
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In comparison to the previous graph that referred to mea-
surements with ideal non-realistic iSCSI setup (null back-
end, separate exported targets each accessed through differ-
ent interface using different connections) the numbers are
much in favour of WZBLK. Where iSCSI peaked at around
650 MB/s read or write throughput, WZBLK is able to read
at a rate more almost 2 GB/s and write at more than 4 GB/s.
Where iSCSI peaked at a maximum of 100 K IOPS, WZBLK
exceeded 170 K IOPS. Finally, while iSCSI stopped scal-
ing aer 16 outstanding requests, WZBLK kept increasing
throughput and IOPS up to 64 outstanding requests. Finally
we notice that WZBLK makes use of multiple cores in both
Target and Initiator, utilising 300% - 400% CPU under most
of the test parameters.

Even in comparison to the first graph that presented lo-
cal ramdisk measurements, WZBLK shows much higher
speeds, since it avoids the RAM-to-RAM copies that the reg-
ular ramdisk implies.

It is notable that given a unit size big enough, and high num-
ber of outstanding I/O requests, WZBLK is able to saturate

the network when writing data to the remote block device,
reaching the peak of 4 GB/s.

On the other hand, when reading from the block device we
can see that bandwidth, even thoughmuch beer thanwhat
iSCSI achieves, is still limited at about 2 GB/s. We have
explained (see 2.2.3) that reading on the Initiator is heav-
ier because of the extra copy of the data happening from
the Rx ring to the struct bio aached memory pages.
However one would expect that using 4 threads would be
enough to saturate the network.

e causewas not evident until a specific behaviourwas no-
ticed during various stress tests: e 4 receiving Multiedge
threads (named HermesRX ) at the Initiator that perform the
necessary memory copies were almost always stuck at 60%
CPU usage, never surpassing this number, while it easily
reached up to 100% when WZBLK was compiled with only
one HermesRX thread (however performance in total was
lower for the single-threaded case, as expected). To fur-
ther clarify the situation, all involved processes and threads
were ploed for both Target and Initiator.
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CPU Utilisation Breakdown

ese results make it obvious that although memory copy-
ing is distributed among cores, the cores are not being
utilised to their full potential. While the primary load for
the HermesRX threads is copying data (by means of Linux
kernel’s copy_page()) there is a factor that is hinder-
ing their execution, preventing them to utilise more than
60% CPU no maer how many outstanding I/Os we set (the
four curves are one on top of the other). We assume that be-
cause of lock contention – mostly on the Rx ring, possibly
other structures as well – during extremely high transfer
rates, those threads are staying interlocked for a significant
amount of time. Further investigation and optimisation is
necessary.

4 Conclusion

4.1 Summary

Wepresented the implementation of a network block device
in the Linux kernel, optimised to work efficiently over high-
speed Ethernet interconnects, that is based on custom reli-
able transport protocol and is capable of exploiting paral-
lelism over multiple network links as well as multiple CPU
cores. Problems inherent to using such commodity hard-
ware were presented, together with the solutions we chose
to implement.

In addition, a brief introduction was given to other solu-
tions, and iSCSI was explored as it was the most common
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solution in use. Our solution was measured against iSCSI
using block-level micro-benchmarks and was shown to be
much more performant in both sequential and random I/O
workloads.

4.2 Improvement areas, future work

4.2.1 Improving on extra copy

A very interesting field for improvement would be to turn
into optional the requirement of aaching the physical
pages when submiing an I/O request in the Linux kernel.
Today, even when issuing a read I/O request, the struct
bio argument passed must have already aached the nec-
essary unused physical pages that will be filled with the
data when reading is complete. As noted (see 2.2.3), when
physical pages are filled from the Ethernet controller in the
order that arrive in the network, they must obviously be
copied to the pages aached to the struct bio. By
enabling an I/O request to be submied without aached
pages, e.g. with a new BIO_NO_PAGES flag, the kernel
can choose to return whatever pages the data is in with-
out any copying whatsoever, or allocate the pages itself if
zero-copy is impossible.

e complication however is that Linux kernel’s block-
layer API has been many years like this and introducing
deep changes in the API will certainly break a lot of exist-
ing code. Nevertheless it is certain that many block-layer
drivers and filesystems will benefit from such a feature.

4.2.2 Paing of data with relevant commands

As currently meta-data requests are sent via RDMA oper-
ations and data is sent via pagelist operations (see 2.2.6),
which are two different calls in the API of Multiedge, they
are sent as different Ethernet frames. However meta-data
requests are small, and it can easily fit in Ethernet’s Jumbo
frames of 9000 bytes together with one or two pages of ac-
tual data. Such improvement would reduce the machine’s
IRQ load and the load of the per-NIC receiver threads (Her-
mesRX threads).

4.2.3 Issuing DMA transfers directly between Ethernet
controller and storage

WZBLK’s zero-copy characteristic means that there are no
copies performed (exception 2.2.3) from main memory to
main memory. However it is unavoidable that copies will
take place from the devices to the main memory, so called
data transfers. For example when data comes from the net-
work it is copied with the use of DMA tomain memory, and
to write to disk another DMA is issued that copies the data
to the block device.

Such operations are not considered copies traditionally
since they are mostly unavoidable and do not impose bur-

den to the CPU due to the use of direct memory access
(DMA). However they are a burden to the memory con-
troller, and given the extremely high rates of today’s Ether-
net interconnects and SSDs it is the case that they may be
limited by the memory bus total bandwidth capabilities.

us, it makes great sense to reduce the data transfers. In
particular, since both network and storage controller are
connected to the same PCI bus, it should be possible to ini-
tiate a DMA request from the Ethernet card to the stor-
age controller and vice-versa, avoiding completely themain
RAM.
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A Appendix

A.1 Terminology

In this document there is frequent use of network layer and
block layer terminology. e most important terms are ex-
plained below:

RDMA Remote Direct Memory Access is an operation that
involves moving copying specific data from main
memory of one computer to specific place in themain
memory of another computer, without imposing bur-
den to the CPU.

SSD (Solid State Storage) is a type of block device that pro-
vides non-volatile memory using flash memory. As
opposed to hard disk drives, this technology has no
moving parts, resulting to faster access speeds by two
or three orders of magnitude in comparison to hard
disks.

Initiator is the side that issues the I/O request. Fre-
quently mentioned also as Client, on the Initiator
the user-space (usually) programs run, and issue the
I/O requests most oen via common read() and
write() operations.

Target or server receives the request that the Initiator sent.
e actual storage devices are on the Target, and it is
common that target is part of a high-end NAS or SAN
system.

Page is the basic unit of systemmemory, which in our case
(x86 architecture) is of 4 KB size. Of high importance
is that it presents the minimal amount of memory
that can be used in DMA operations.
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Blo is the minimal I/O unit in block devices and filesys-
tems. 512 B (i.e. equal to sector size) or 4 KB are the
most common block sizes in today’s disks. However
4 KB is the most prevalent block size that filesystems
present, which handily matches the page size on x86
architectures. In our case both block and page are al-
ways referring to 4 KB so there should be no confu-
sion, a design choice aiming to avoid complexity.

zero-copy a characteristic of high performance systems
that allows passing memory buffers from/to different
components without the actual data being copied.

Rx ring is a circular buffer allocated by the Ethernet
adapter driver module. When data arrives from the
network, the NIC performs DMA and puts the whole
packet in free space of the Rx ring. As such it is of
primary importance for this buffer to never be full,
as in such case packets will be dropped.

MB/s, GB/s 220, 230 Bytes per second, as opposed to

Mbps, Gbps 106, 109 bits per second.

tgtd is the iSCSI target shipping with Redhat Enterprise
Linux 6. It is implemented completely in userspace
and comes with several back-ends that differentiate
the read/write interface to the kernel, e.g. rdwr
back-end for common read(), write() system
calls, and mmap back-end for mmap’ed I/O.e null
back-end is equivalent to reading zeros and writing
nothing.

top half is the part of the interrupt handler that actually re-
sponds to the hardware interrupt, as opposed to the
boom half part (or ”so” IRQ) that is scheduled by
the top half to do additional processing.

ramdrv.ko is a Linux kernel RAM drive with special per-
formance tuning features, developed at CARV labo-
ratory, FORTH-ICS, as part of the IOLANES [15] EU-
funded project.
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