Your browser does not support JavaScript!

Home    Collections    Type of Work    Doctoral theses  

Doctoral theses

Search command : Author="Κωνσταντινίδης"  And Author="Κ."  And Author="Θεόδωρος"

Current Record: 4 of 2028

Back to Results Previous page
Next page
Add to Basket
[Add to Basket]
Identifier 000428273
Title Robust nonlinear state estimation for humanoid robots
Alternative Title Σθεναρή μη γραμμική εκτίμηση κατάστασης ανθρωποειδών ρομπότ
Author Πιπεράκης, Στυλιανός Φ.
Thesis advisor Τραχανιάς, Παναγιώτης
Reviewer Τσακίρης, Δημήτριος
Παπαδόπουλος, Ευάγγελος
Τσαγκαράκης, Νικόλαος
Gomez, Randy
Κανούλας, Δημήτριος
Bennewitz, Maren
Abstract Center of Mass (CoM) estimation realizes a crucial role in legged locomotion. Most walking pattern generators and real-time gait stabilizers commonly assume that the CoM position and velocity are available for feedback. In this thesis we present one of the first 3D-CoM state estimators for humanoid robot walking. The proposed estimation scheme fuses effectively joint encoder, inertial, and feet pressure measurements with an Extended Kalman Filter (EKF) to accurately estimate the 3D-CoM position, velocity, and external forces acting on the CoM. Furthermore, it directly considers the presence of uneven terrain and the body’s angular momentum rate and thus effectively couples the frontal with the lateral plane dynamics, without relying on feet Force/Torque (F/T) sensing. Nevertheless, it is common practice to transform the measurements to a world frame of reference and estimate the CoM with respect to the world frame. Consequently, the robot’s base and support foot pose are mandatory and need to be co-estimated. To this end, we extend a well-established in literature floating mass estimator to account for the support foot dynamics and fuse kinematic-inertial measurements with the Error State Kalman Filter (ESKF) to appropriately handle the overparametrization of rotations. In such a way, a cascade state estimation scheme consisting of a base and a CoM estimator is formed and coined State Estimation RObot Walking (SEROW). Additionally, we employ Visual Odometry (VO) and/or LIDAR Odometry (LO) measurements to correct the kinematic drift caused by slippage during walking. Unfortunately, such measurements suffer from outliers in a dynamic environment, since frequently it is assumed that only the robot is inmotion and the world around is static. Thus, we introduce the Robust Gaussian ESKF (RGESKF) to automatically detect and reject outliers without relying on any prior knowledge on measurement distributions or finely tuned thresholds. Therefore, SEROW is robustified and is suitable for dynamic human environments. In order to reinforce further research endeavors, SEROW is released to the robotic community as an open-source ROS/C++ package. Up to date control and state estimation schemes readily assume that feet contact status is known a priori. Contact detection is an important and largely unexplored topic in contemporary humanoid robotics research. In this thesis, we elaborate on a broader question: in which gait phase is the robot currently in? To this end, we propose a holistic framework based on unsupervised learning from proprioceptive sensing that accurately and efficiently addresses this problem. More specifically, we robustly detect one of the three gaitphases, namely Left Single Support (LSS), Double Support (DS), and Right Single Support (RSS) utilizing joint encoder, IMU, and F/T measurements. Initially, dimensionality reduction with Principal Components Analysis (PCA) or autoencoders is performed to extract useful features, obtain a compact representation, and reduce the noise. Next, clustering is performed on the low-dimensional latent space with GaussianMixtureModels (GMMs) and three dense clusters corresponding to the gait-phases are obtained. Interestingly, it is demonstrated that the gait phase dynamics are low-dimensional which is another indication pointing towards locomotion being a low dimensional skill. Accordingly, given that the proposed framework utilizes measurements fromsensors that are commonly available on humanoids nowadays, we offer the Gait-phase Estimation Module (GEM), an opensource ROS/Python implementation to the robotic community. SEROW and GEM have been quantitatively and qualitatively assessed in terms of accuracy and efficiency both in simulation and under real-world conditions. Initially, a simulated robot in MATLAB and NASA’s Valkyrie humanoid robot in ROS/Gazebo were employed to establish the proposed schemes with uneven/rough terrain gaits. Subsequently, the proposed schemes were integrated on a) the small size NAO humanoid robot v4.0 and b) the adult size WALK-MAN v2.0 for experimental validation. With NAO, SEROW was implemented on the robot to provide the necessary feedback for motion planning and realtime gait stabilization to achieve omni-directional locomotion even on outdoor/uneven terrains. Additionally, SEROW was used in footstep planning and also in Visual SLAM with the same robot. Regarding WALK-MAN v2.0, SEROW was executed onboard with kinematic-inertial and F/T data to provide base and CoM feedback in real-time. Furthermore, VO has also been considered to correct the kinematic drift while walking and facilitate possible footstep planning. GEM was also employed to estimate the gait phase in WALK-MAN’s dynamic gaits. Summarizing, a robust nonlinear state estimator is proposed for humanoid robot walking. Nevertheless, this scheme can be readily extended to other type of legged robots such as quadrupeds, since they share the same fundamental principles.
Language English
Subject Gait-phase estimation
Kalman filtering
Nonlinear CoMState Estimation
Unsupervised learning
Ανίχνευση ακραίων τιμών
Ανθρωποειδή ρομπότ
Εκτίμηση φάσης βαδίσματος
Μη-γραμμική εκτίμηση κατάστασης κέντρου μάζας
Μη-γραμμική εκτίμηση κατάστασης σώματος
Μη-επιβλεπόμενη μάθηση
Φίλτρο Κάλμαν
Issue date 2020-03-27
Collection   Faculty/Department--Faculty of Sciences and Engineering--Department of Computer Science--Doctoral theses
  Type of Work--Doctoral theses
Permanent Link Bookmark and Share
Views 3

Digital Documents
No preview available

No permission to view document.
It won't be available until: 2020-09-27